There is a demand in rapid and robust methods to determine the affinity of drugs to receptors, enzymes, and transport proteins. Differential scanning calorimetry (DSC) is a common method to prove the existence of ligand-protein binding from the shift of denaturation peak, but it is rarely used to obtain the binding constant values. The work is aimed to prove that the DSC experiments can be a source of reliable values of the binding constants and information on the stoichiometry of drug-albumin binding. DSC thermograms of bovine serum albumin denaturation in the presence of several drugs with different affinity and stoichiometry of binding to albumin: naproxen, warfarin, ibuprofen, and isoniazid were recorded. The dependences of the denaturation peak maximum temperature and area on the molar drug/protein ratio, which varied from 0 to 100, were considered. With the help of numerical modeling of the DSC curves, these dependences were predicted using the binding parameters determined in independent experiments and a simple two-state model of denaturation. The DSC data at relatively small concentrations of ligands are in good agreement with the calculation results. The deviations from the model predictions at high ligand concentrations in the cases of naproxen and ibuprofen indicate that albumin is able to bind several additional molecules of these drugs with its low-affinity sites. The fit was improved by using a sequential binding model with two binding constants K = 1.0 × 10 and K = 1.0 × 10 for naproxen and a cooperative binding model for ibuprofen. The stoichiometry of drug-albumin complexes fully saturated with drug ligand was calculated from the dependence of the denaturation temperature on the drug concentration. In the case of isoniazid, DSC thermograms indicated very weak binding to albumin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2020.119362 | DOI Listing |
Int J Pharm X
December 2024
Laboratory of Microfluidics and Medical Microsystems, Research Institute for Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
Materials (Basel)
November 2024
Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic.
Firefighters need personal protection equipment and protective clothing to be safe and protected when responding to fire incidents. At present, firefighters' suits are developed by using inherently thermal-resistant fibers but pose serious problems related to comfort. In the present research, multilayered fire-fighting fabrics were developed with different fiber blends.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Institute of Technology, University of the National Education Commission (UKEN), ul. Podchorążych 2, 30-084 Krakow, Poland.
This study investigates the influence of cooling rates on the microstructure and phase transformations of the high-entropy alloy CrMnFeCoNiP. The alloy was synthesized via arc melting and subjected to three cooling conditions: slow cooling (52 K/s), accelerated cooling after a short electric arc pulse (3018 K/s), and rapid quenching (10⁵-10⁶ K/s) using the melt-spinning method. The microstructures were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Mössbauer spectroscopy.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Thailand Institute of Nuclear Technology (Public Organization), Ongkarak District, Nakornnayok 26120, Thailand.
In this research, blends of bio-based polybenzoxazine (V-fa) and polycaprolactone (PCL) with different molecular weights (M) (14,000, 45,000, and 80,000 Da) were prepared with varying PCL content from 10 to 95 wt%. The spectra measured using Fourier Transform Infrared Spectroscopy (FTIR) may indicate the presence of hydrogen bonding between two polymeric components. The thermograms obtained using a Differential Scanning Calorimeter (DSC) and dynamic mechanical analyzer (DMA) exhibited a shift in glass transition temperature (T), which indicated partial miscibility between V-fa and PCL.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, PR China.
The interfacial interactions between the enhanced nanoscale components and the polymer matrix, as well as the photopolymerization behavior of the composite system, are of paramount importance to the quality and performance of photo-curable nanocomposites. Cellulose nanocrystals (CNCs), a novel class of green reinforcing materials, are anticipated to facilitate the development of high-performance applications of advanced functional materials. Herein, the promoting and enhancing effects of modified CNCs on photo-curable nanocomposites are studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!