Characterization of porcine p53 and its regulation by porcine Mdm2.

Gene

College of Veterinary Medicine, China Agricultural University, Beijing 100193, China. Electronic address:

Published: July 2020

Pigs have been increasingly recognized as a relevant model for studying many human diseases. However, functions and regulations of numerous critical molecules involved in human diseases are not well characterized in pigs, including the prominent tumor suppressor p53, a transcription factor involved in various anti-proliferative processes. In this study, we systematically characterized porcine p53 (p-p53) in its transcriptional activity and regulation by the E3 ligase Mdm2, in comparison with that of human p53 (h-p53). p-p53 is highly homologous to h-p53 with the N-terminal region showing relative divergence. p-p53 exhibits a comparable transcriptional activity to that of h-p53 towards a diverse range of known target genes, and is subject to ubiquitination and degradation by both human and porcine Mdm2 (h-/p-Mdm2). Utilization of the h-Mdm2 targeting compound Nutlin-3 and protein RPL11 inhibits the negative effect of p-Mdm2 on p-p53. These results suggest that the transcription activity and regulation of p-p53 is very similar to that of h-p53, and that the developed agents targeting the h-p53 pathway could be used in the study of p53 related processes and diseases in pigs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2020.144699DOI Listing

Publication Analysis

Top Keywords

porcine p53
8
porcine mdm2
8
human diseases
8
transcriptional activity
8
activity regulation
8
p53
5
p-p53
5
h-p53
5
characterization porcine
4
p53 regulation
4

Similar Publications

PLK3 weakens antioxidant defense and inhibits proliferation of porcine Leydig cells under oxidative stress.

Sci Rep

January 2025

Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China.

Aging is characterized by cellular degeneration and impaired physiological functions, leading to a decline in male sexual desire and reproductive capacity. Oxidative stress (OS) lead to testicular aging by impairing the male reproductive system, but the potential mechanisms remain unclear. In the present study, the functional status of testicular tissues from young and aged boars was compared, and the transcriptional responses of Leydig cells (LCs) to hydrogen peroxide (HO)-induced senescence were explored, revealing the role of OS in promoting aging of the male reproductive system.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is a viral infectious disease that can cause infection in pigs of different ages. The condition known as porcine reproductive and respiratory syndrome poses a serious risk to the world's pig business and results in significant financial losses. Fuzhengjiedu San (FZJDS) is a traditional Chinese medicine compound, the main components include:Radix Isatidis, Radix Astragali and Herba Epimedii.

View Article and Find Full Text PDF

Generation of a genetically engineered porcine melanoma model featuring oncogenic control through conditional Cre recombination.

Sci Rep

January 2025

Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.

Article Synopsis
  • Melanoma is a severe skin cancer that starts from melanocytes, and existing rodent models have limitations in mirroring human conditions.
  • Researchers have created a transgenic pig model that mimics human melanoma using somatic cell nuclear transfer (SCNT), enabling better study of the disease.
  • This new model allows for the investigation of melanoma development and response to treatments, providing a significant resource for advancing cancer research and drug testing.
View Article and Find Full Text PDF

Rutin attenuates zearalenone-induced ferroptosis of endometrial stromal cells in piglets through the p53 signaling pathway.

Ecotoxicol Environ Saf

December 2024

College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, Hefei 230036, China. Electronic address:

Zearalenone (ZEA) is an environmentally widespread mycotoxin capable of posing a serious threat to food safety and public health, and porcine endometrial stromal cells (ESCs) are particularly sensitive to the toxic effects of ZEA. We hypothesized that Rutin, a flavonoid antioxidant, could significantly alleviate ZEA-induced ferroptosis through the p53 signaling pathway. In this study, we used porcine ESCs as a research model.

View Article and Find Full Text PDF

Zearalenone (ZEA) induces oxidative damage in porcine endometrial stromal cells (ESCs), which is a critical factor affecting the growth and reproduction of female pigs. We hypothesize that rutin, a flavonoid antioxidant, can alleviate ZEA-induced cellular damage through the p53 signaling pathway. In this experiment, porcine ESCs were used as a research model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!