A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude? | LitMetric

Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude?

Respir Physiol Neurobiol

Institute Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Faculty of Medicine, Université Laval, Québec, QC, Canada; High Altitude Pulmonary and Pathology Institute IPPA. La Paz, Bolivia. Electronic address:

Published: June 2020

In the present study we analyze the epidemiological data of COVID-19 of Tibet and high-altitude regions of Bolivia and Ecuador, and compare to lowland data, to test the hypothesis that high-altitude inhabitants (+2,500 m above sea-level) are less susceptible to develop severe adverse effects in acute SARS-CoV-2 virus infection. Analysis of available epidemiological data suggest that physiological acclimatization/adaptation that counterbalance the hypoxic environment in high-altitude may protect from severe impact of acute SARS-CoV-2 virus infection. Potential underlying mechanisms such as: (i) a compromised half-live of the virus caused by the high-altitude environment, and (ii) a hypoxia mediated down regulation of angiotensin-converting enzyme 2 (ACE2), which is the main binding target of SARS-CoV-2 virus in the pulmonary epithelium are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175867PMC
http://dx.doi.org/10.1016/j.resp.2020.103443DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 virus
16
epidemiological data
8
acute sars-cov-2
8
virus infection
8
virus
5
pathogenesis sars-cov-2
4
virus decrease
4
decrease high-altitude?
4
high-altitude? study
4
study analyze
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!