Introduction: 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an intracellular enzyme that catalyses conversion of cortisone into cortisol; correspondingly, 11β-HSD1 inhibitors inhibit this conversion. This systematic review focuses on the use of 11β-HSD1 inhibitors in diseases known to be associated with abnormalities in hypothalamic pituitary adrenal (HPA) axis function.

Methods: The databases screened for suitable papers were: MedLine, EMBASE, Web of Science, ClinicalTrials.gov, and Cochrane Central.

Results: 1925 papers were identified, of which 29 were included in the final narrative synthesis. 11β-HSD1 and its inhibitors have been studied in diabetes, obesity, metabolic syndrome (MetS), and Alzheimer's disease (AD). Higher expression of 11β-HSD1 is seen in obesity and MetS, but has not yet been described in obesity or AD. Genetic studies identify 11β-HSD1 SNPs of interest in populations with diabetes, MetS, and AD. One phase II trial successfully reduced HbA1c in a diabetic population, however trials in MetS, obesity, and AD have not met primary endpoints.

Conclusions: Translation of this research from preclinical studies has proved challenging so far, however this is a growing area of research and more studies should focus on understanding the complex relationships between 11β-HSD1 and disease pathology, especially given the therapeutic potential of 11β-HSD1 inhibitors in development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2020.154246DOI Listing

Publication Analysis

Top Keywords

11β-hsd1 inhibitors
16
11β-hydroxysteroid dehydrogenase
8
dehydrogenase type
8
systematic review
8
narrative synthesis
8
11β-hsd1
8
type inhibitor
4
inhibitor human
4
human disease-a
4
disease-a systematic
4

Similar Publications

Adaptive Immunity Determines the Cancer Treatment Outcome of Oncolytic Virus and Anti-PD-1.

Bull Math Biol

January 2025

Department of Mathematics, University of Manitoba, 340 UMSU University Centre, Winnipeg, MB, R3T 2N2, Canada.

The immune checkpoint inhibitor, anti-programmed death protein-1 (anti-PD-1), enhances adaptive immunity to kill tumor cells, and the oncolytic virus (OV) triggers innate immunity to clear the infected tumor cells. We create a mathematical model to investigate how the interaction between adaptive and innate immunities under OV and anti-PD-1 affects tumor reduction. For different immunity strength, we create the corresponding virtual baseline patients and cohort patients to decipher the major factors determining the treatment outcome.

View Article and Find Full Text PDF

FoxO1 promotes high glucose-induced inflammation and cataract formation via JAK1/STAT1.

Graefes Arch Clin Exp Ophthalmol

January 2025

National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.

Purpose: To investigate whether in diabetic cataract (DC), FoxO1 regulates high glucose (HG)-induced activation of NLRC4/IL-6 inflammatory mediators in human lens epithelial cells (SRA01/04) via the JAK1/STAT1 pathway, leading to cataract formation.

Methods: Expression levels of FoxO1, inflammatory factor IL-6 and inflammatory vesicle NLRC4 were examined in SRA01/04 under high glucose (HG) stress at 25-150 mM. Rat lenses were also cultured using HG medium with or without the addition of the FoxO1 inhibitor AS1842856 and the JAK1 agonist RO8191.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a bone-marrow-based cancer of plasma cells. Over the last 2 decades, marked treatment advances have led to improvements in the overall survival (OS) of patients with this disease. Key developments include the use of chemotherapy, immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies.

View Article and Find Full Text PDF

In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.

View Article and Find Full Text PDF

PD-L1/PD-1 checkpoint inhibitors (CPIs) are mainstream agents for cancer immunotherapy, but the prognosis is unsatisfactory in solid tumor patients lacking preexisting T-cell reactivity. Adjunct therapy strategies including the intratumoral administration of immunostimulants aim to address this limitation. CpG oligodeoxynucleotides (ODNs), TLR9 agonists that can potentiate adaptive immunity, have been widely investigated to tackle PD-L1/PD-1 resistance, but clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!