Intracellular cAMP (i-cAMP) levels play an important role in acute myeloid leukemia (AML) cell proliferation and differentiation. Its levels are the result of cAMP production, degradation, and exclusion. We have previously described histamine H receptors and MRP4/ABCC4 as two potential targets for AML therapy. Acting through histamine H receptors, histamine increases cAMP production/synthesis, while MRP4/ABCC4 is responsible for the exclusion of this cyclic nucleotide. In this study, we show that histamine treatment induces MRP4/ABCC4 expression, augmenting cAMP efflux, and that histamine, in combination with MRP inhibitors, is able to reduce AML cell proliferation. Histamine, through histamine H receptor, increases i-cAMP levels and induces MRP4 transcript and protein levels in U937, KG1a, and HL-60 cells. Moreover, histamine induces MRP4 promoter activity in HEK293T cells transfected with histamine H receptor (HEK293T-H R). Our results support that the cAMP/Epac-PKA pathway, and not MEK/ERK nor PI3K/AKT signaling cascades, is involved in histamine-mediated upregulation of MRP4 levels. Finally, the addition of histamine potentiates the inhibition of U937, KG1a, and HL-60 cell proliferation induced by MRP4 inhibitors. Our data highlight that the use of a poly-pharmacological approach aimed at different molecular targets would be beneficial in AML treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.15344 | DOI Listing |
Cell Rep
January 2025
School of Infection, Inflammation and Immunology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. Electronic address:
Interleukin (IL)-7 promotes T cell expansion during lymphopenia. We studied the metabolic basis in CD4 T cells, observing increased glucose usage for nucleotide synthesis and oxidation in the tricarboxylic acid (TCA) cycle. Unlike other TCA metabolites, glucose-derived citrate does not accumulate upon IL-7 exposure, indicating diversion into other processes.
View Article and Find Full Text PDFJ Gastroenterol
January 2025
Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, China.
Background: We aim to comprehensively analyze and validate the prognostic efficacy of tetraspanin 4 (TSPAN4) and several other migrasome-related markers in hepatocellular carcinoma (HCC).
Methods: The expression, diagnostic, and prognostic efficacy of five migrasome-related genes in HCC were analyzed using several databases. Five pairs of adjacent non-tumor tissues and HCC tissues were used to validate the expression.
Cell Mol Biol (Noisy-le-grand)
January 2025
Laboratory of Cellular Toxicology, Faculty of Science, Department of Biology, Badji Mokhtar University, Annaba, Algeria.
Cell Mol Biol (Noisy-le-grand)
January 2025
College of Life Sciences, Liaoning Normal University, Dalian 116000, Liaoning Province, China.
Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!