The occurrence of boron in water and its inefficient removal are the key issue in desalination and water treatment. Adsorption by fixed-bed column is usually used to remove mineral and organic contaminants from the aqueous phase. The adsorption of the boron onto activated carbon, prepared from palm bark, is studied. Batch adsorption experiments are developed to determine the equilibrium time and the best isotherm model. The kinetic adsorption data can be described by the second-order equation. Among the adsorption isotherm models, Langmuir and Sips models give better fit of the equilibrium data. The calculated thermodynamic parameters show that the boron adsorption is exothermic in nature. The effects of inlet boron concentration, feed flow rate and weight of activated carbon on the fixed-bed adsorption are determined by two-level factorial experimental design. Breakthrough and saturation times are higher at high adsorbent weight and low flow rates. The increase of boron initial concentration decreases breakthrough and saturation times. The volume treated per gram of activated carbon is higher at lower initial concentrations and at higher adsorbent weight. Compared to other models, the Yan model fits better the experimental data of the breakthrough curves with R of 0.993.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2020.107DOI Listing

Publication Analysis

Top Keywords

activated carbon
16
adsorption
8
carbon prepared
8
prepared palm
8
palm bark
8
breakthrough curves
8
breakthrough saturation
8
saturation times
8
adsorbent weight
8
boron
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!