Plastic and hydrocarbon pollution in aquatic ecosystems is a worldwide reality and serious concern today. Plastic debris presents a threat to ecosystems and organisms. Hydrocarbons are also considered priority pollutants. The hydrophobicity of the polymer in combination with the high surface area causes plastics to act as a vector for organic contaminants such as hydrocarbons. The first aim of this work was to evaluate the presence of plastic and hydrocarbon pollution in water from two reefs and two rivers and to identify plastic in six sediment beaches in Veracruz State, Mexico. In addition, the second aim was to analyse the ability of a bacterial consortium to biodegrade hydrocarbons in an airlift bioreactor and to identify degrading bacterial strains of polyethylene terephthalate (PET). Microplastics (100 nm-5 mm) were found in four water samples. Fragments of plastic collected from the reefs ranged in size from 0.716 to 32 μm and in rivers from 0.833 to 784 μm. On the sediment beaches, macroplastics of sizes 2-10 cm were detected. A number of hydrocarbons were also detected in the water samples of both reefs and one river, including n-octane, n-nonane, phenanthrene, n-eicosane, n-dotriacontane, n-hexatriacontane, n-triacontane, and n-tetratriacontane. As a biotechnological alternative for remediation of hydrocarbons and plastics, we attempted to produce a collection of native microorganisms able to degrade them. This work shows results from the bioprospection of a bacterial consortium (Xanthomonas, Acinetobacter bouvetii, Shewanella, and Aquamicrobium lusatiense) for hydrocarbon biodegradation in an airlift bioreactor. The tested consortium was able to successfully degrade the maximum diesel concentration (20 g L) tested for 10 days. Also, the first visual evidence of PET degradation by an isolated forest-native bacterial strain showed that Bacillus muralis is the most efficient degrader.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-08831-zDOI Listing

Publication Analysis

Top Keywords

plastic hydrocarbon
12
hydrocarbon pollution
12
sediment beaches
12
beaches veracruz
8
veracruz state
8
bacterial consortium
8
airlift bioreactor
8
water samples
8
plastic
5
hydrocarbons
5

Similar Publications

FDA recommends monitoring differential pressure across filter membranes during sterile filtration process validation. However, few resources are available to help pharmaceutical manufacturers anticipate expected differential pressures during sterilizing filtration of different solutions. To address this gap, Meissner evaluated differential pressures across different filtration membranes using various test solutions at increasing pump speeds.

View Article and Find Full Text PDF

The coexistence of microplastics and heavy metals in soil can lead to more intricate environmental effects. While plant growth-promoting bacteria have been widely recognized for enhancing the remediation of heavy metal-contaminated soils, little research has been conducted to investigate whether they can alleviate the stress of microplastic-heavy metal composite contamination on plants. We investigated the effects of isolated and screened plant growth-promoting bacteria on the growth and cadmium (Cd) accumulation of under the composite pollution of Cd and polypropylene (PP) with different particle sizes (6.

View Article and Find Full Text PDF

[Degradation Characteristics of PBAT Fully Biodegradable Mulch Film].

Huan Jing Ke Xue

January 2025

College of Ecology and Environment, Ningxia University, Yinchuan 750021, China.

Replacing traditional plastic mulch with fully biodegradable mulch is an important research direction to solve the problem of "white pollution," but whether it can truly realize biodegradation is still the focus of many scholars. In this study, field and indoor experiments were carried out in Pingluo County, Ningxia Hui Autonomous Region, using poly(butyleneadipate-co-terephthalate) (PBAT) fully biodegradable mulch film and ordinary polyethylene (PE) mulch film, with no mulch film (CK) as the control. Macroscopic characteristics such as the degree of apparent cracking of the mulch film, loss of the mulch film area, and the rate of weight loss were observed, and the results were combined with the results of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry (TGR).

View Article and Find Full Text PDF

Mucoadhesive Enhancement of Gelatine by Tannic Acid Crosslinking for Buccal Application.

Biopolymers

January 2025

Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia.

This study aims to evaluate the impact of formulation parameters on tannic acid-crosslinked gelatine (GelTA) films, intended as a mucoadhesive matrix for extended buccal drug delivery. GelTA films were prepared using the solvent evaporation technique and screened based on their mucoadhesive and dissolution characteristics. The formulation variables included the source of gelatine (bovine and fish), tannic acid concentration, pH of the film-forming solutions, and the type and concentration of plasticisers.

View Article and Find Full Text PDF

Design and Characterization of Polyvinyl Alcohol/Kappa-Carrageenan Pickering Emulsion Biocomposite Films for Potential Wound Care Applications.

J Biomed Mater Res A

January 2025

Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Ueda, Japan.

This study aimed to develop polyvinyl alcohol (PVA) and kappa-carrageenan (κCA) biocomposite films using a Pickering emulsion technique for wound care applications. Juniper essential oil and modified sepiolite were incorporated to enhance functionality, with films prepared via solvent casting and characterized for structural, thermal, and mechanical properties. The PCOS-2 film exhibited the highest mechanical performance, with Young's modulus of 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!