Depression is a devastating mental disorder affected by multiple factors that can have genetic, environmental, or metabolic causes. Although previous studies have reported an association of dysregulated glucose metabolism with depression, its underlying mechanism remains elusive at the molecular level. A small percentage of glucose is converted into uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) via the hexosamine biosynthetic pathway, which serves as an immediate donor for protein O-GlcNAc modification. O-GlcNAcylation is a particularly common post-translational modification (PTM) in the brain, and the functional significance of O-GlcNAcylation in neurodegenerative diseases has been extensively reported. However, whether the degree of O-GlcNAc modification is associated with depressive disorder has not been examined. In this study, we show that increased O-GlcNAcylation levels reduce inhibitory synaptic transmission in the medial prefrontal cortex (mPFC), and that Oga mice with chronically elevated O-GlcNAcylation levels exhibit an antidepressant-like phenotype. Moreover, we found that virus-mediated expression of OGA in the mPFC restored both antidepressant-like behavior and inhibitory synaptic transmission. Therefore, our results suggest that O-GlcNAc modification in the mPFC plays a significant role in regulating antidepressant-like behavior, highlighting that the modulation of O-GlcNAcylation levels in the brain may serve as a novel therapeutic candidate for antidepressants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181662 | PMC |
http://dx.doi.org/10.1038/s41598-020-63819-6 | DOI Listing |
Cell Commun Signal
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, P. R. China.
Fat mass and obesity-associated protein (FTO) was the first m6A demethylase identified, which is responsible for eliminating m6A modifications in target RNAs. While it is well-established that numerous cytosolic and nuclear proteins undergo O-GlcNAcylation, the possibility of FTO being O-GlcNAcylated and its functional implications remain unclear. This study found that a negative correlation between FTO expression and O-GlcNAcylation in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML).
View Article and Find Full Text PDFCarbohydr Res
March 2025
Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan. Electronic address:
Extracellular O-GlcNAc is a unique post-translational modification that occurs in the epidermal growth factor-like (EGF) domain of the endoplasmic reticulum (ER) lumen. The EGF domain-specific O-GlcNAc transferase (EOGT), catalyzes the transfer of O-GlcNAc to serine/threonine residues of the C-terminal EGF domain. Thus, EOGT-dependent O-GlcNAc modifications are mainly found in selective proteins that are localized in the extracellular spaces or extracellular regions of membrane proteins.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Our previous study revealed a link between O-GlcNAc transferase (OGT) localization and protein phosphatase 2A (PP2A) activity in osteoblast. Given the association of PP2A downregulation with osteoblast differentiation, we hypothesized that OGT localization changes during this process. We examined OGT localization in MC3T3-E1 cells undergoing differentiation under normal and high glucose conditions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței Str., 050095 Bucharest, Romania.
Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible.
View Article and Find Full Text PDFPLoS Genet
January 2025
Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy.
The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!