AI Article Synopsis

  • The study investigates the effects of somatic non-coding mutations in ovarian cancer by analyzing epigenomic and transcriptomic data from primary tumors.
  • Researchers identified 25 frequently mutated regulatory elements, including an enhancer linked to the differential expression of two genes, ZSCAN16 and ZSCAN12, using CRISPR/Cas9 knockout techniques.
  • The findings suggest that these mutations affect the PAX8 transcriptional network, which plays a crucial role in ovarian cancer development.

Article Abstract

The functional consequences of somatic non-coding mutations in ovarian cancer (OC) are unknown. To identify regulatory elements (RE) and genes perturbed by acquired non-coding variants, here we establish epigenomic and transcriptomic landscapes of primary OCs using H3K27ac ChIP-seq and RNA-seq, and then integrate these with whole genome sequencing data from 232 OCs. We identify 25 frequently mutated regulatory elements, including an enhancer at 6p22.1 which associates with differential expression of ZSCAN16 (P = 6.6 × 10-4) and ZSCAN12 (P = 0.02). CRISPR/Cas9 knockout of this enhancer induces downregulation of both genes. Globally, there is an enrichment of single nucleotide variants in active binding sites for TEAD4 (P = 6 × 10-11) and its binding partner PAX8 (P = 2×10-10), a known lineage-specific transcription factor in OC. In addition, the collection of cis REs associated with PAX8 comprise the most frequently mutated set of enhancers in OC (P = 0.003). These data indicate that non-coding somatic mutations disrupt the PAX8 transcriptional network during OC development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181647PMC
http://dx.doi.org/10.1038/s41467-020-15951-0DOI Listing

Publication Analysis

Top Keywords

non-coding somatic
8
somatic mutations
8
ovarian cancer
8
regulatory elements
8
frequently mutated
8
non-coding
4
mutations converge
4
pax8
4
converge pax8
4
pax8 pathway
4

Similar Publications

Mitochondria, cellular powerhouses, harbor DNA (mtDNA) inherited from the mothers. MtDNA mutations can cause diseases, yet whether they increase with age in human germline cells-oocytes-remains understudied. Here, using highly accurate duplex sequencing of full-length mtDNA, we detected mutations in single oocytes, blood, and saliva in women between 20 and 42 years of age.

View Article and Find Full Text PDF

Background: Acute myelogenous leukemia (AML) is a type of blood cancer that is characterized by the accumulation of young and undeveloped myeloid cells in the bone marrow. It is considered a heterogeneous disease due to its diverse nature. Endoplasmic reticulum (ER) stress has emerged as a critical regulator of tumor development and drug resistance in various cancers.

View Article and Find Full Text PDF

Germline and somatic pathogenic variants in the gene, encoding the nuclear protein parafibromin, increase the risk for parathyroid carcinoma and cause hereditary primary hyperparathyroidism (PHPT) syndromes known as familial isolated hyperparathyroidism (FIHP) and hyperparathyroidism-jaw tumor syndrome (HPT-JT). The identification of pathogenic germline variants in PHPT-susceptibility genes can influence surgical planning for parathyroidectomy, guide screening for potential syndromic manifestations, and identify/exonerate at-risk family members. Numerous types of pathogenic germline variants have been described for -related conditions, including deletion, truncating, missense, and splice site mutations.

View Article and Find Full Text PDF

Chronic diseases such as cancer, autoimmunity, and organ failure currently depend on conventional pharmaceutical treatment, which may cause detrimental side effects in the long term. In this regard, cell-based therapy has emerged as a suitable alternative for treating these chronic diseases. Transdifferentiation technologies have evolved as a suitable therapeutic alternative that converts one differentiated somatic cell into another phenotype by using transcription factors (TFs), small molecules, or small, single-stranded, non-coding RNA molecules (miRNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!