The long external filament of bacterial flagella is composed of several thousand copies of a single protein, flagellin. Here, we explore the role played by lysine methylation of flagellin in Salmonella, which requires the methylase FliB. We show that both flagellins of Salmonella enterica serovar Typhimurium, FliC and FljB, are methylated at surface-exposed lysine residues by FliB. A Salmonella Typhimurium mutant deficient in flagellin methylation is outcompeted for gut colonization in a gastroenteritis mouse model, and methylation of flagellin promotes bacterial invasion of epithelial cells in vitro. Lysine methylation increases the surface hydrophobicity of flagellin, and enhances flagella-dependent adhesion of Salmonella to phosphatidylcholine vesicles and epithelial cells. Therefore, posttranslational methylation of flagellin facilitates adhesion of Salmonella Typhimurium to hydrophobic host cell surfaces, and contributes to efficient gut colonization and host infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181671PMC
http://dx.doi.org/10.1038/s41467-020-15738-3DOI Listing

Publication Analysis

Top Keywords

salmonella typhimurium
12
methylation flagellin
12
promotes bacterial
8
host cell
8
lysine methylation
8
gut colonization
8
epithelial cells
8
adhesion salmonella
8
methylation
6
flagellin
6

Similar Publications

Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties.

Foods

January 2025

Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil.

Polysaccharides represent the most abundant biopolymers in agri-food wastes and thus are the most studied polymers to produce biodegradable films for use in packaging. Starch is among the major polysaccharides extracted from food and agricultural waste that have been used as precursor material for film production. Therefore, the present study aimed at producing an active film with antimicrobial properties using starch extracted from cassava waste and oil extracted from cloves.

View Article and Find Full Text PDF

The Molecular Weight of Enzymatically Modified Pectic Oligosaccharides from Apple Pomace as a Determinant for Biological and Prebiotic Activity.

Molecules

December 2024

Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, B. Stefanowskiego 2/22, 90-537 Łódź, Poland.

The purpose of this research was to investigate the prebiotic effects of different fractions of pectin-derived oligosaccharides (POSs) from apple pomace (AP) in relation to their molecular weight (MW), structure, and composition. Enzymatic treatment of the apple pomace resulted in high-molecular-weight arabinans and rhamnogalacturonans (MW 30-100 kDa, MW 10-30 kDa), as well as oligomeric fractions with molecular weights of less than 10 kDa, consisting mainly of homogalacturonan. The biological potential of the POSs against various lactobacilli and bifidobacteria was evaluated.

View Article and Find Full Text PDF

Outbreak of subsp. Serovar Napoli on a Dairy Cow Farm.

Animals (Basel)

January 2025

Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna (IZSLER), "Bruno Ubertini", Diagnostic Section of Piacenza, Italy Via Strada Della Faggiola 1, 29027 Podenzano, PC, Italy.

is diffused worldwide, and subsp. is spread worldwide with many serovars associated with the infection of domestic bovines. The most spread are .

View Article and Find Full Text PDF

Aims: This study aimed to evaluate the potential of phage phSE-5 to inactivate Salmonella enterica serovar Typhimurium in milk (at 4, 10 and 25°C), liquid whole egg and eggshell (at 25°C for both matrices).

Methods And Results: Since the success of phage treatment in food depends on maintaining phage viability towards different food conditions, firstly the stability of phage phSE-5 at different temperatures and pHs was assessed. The effect of phage phSE-5 against S.

View Article and Find Full Text PDF

Single-cell RNA sequencing of the spleen reveals differences in Salmonella typhimurium infection mechanisms between different chicken breeds.

Poult Sci

December 2024

Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China. Electronic address:

Bacterial infections remain an important cause of morbidity in poultry production. The molecular characteristics and dynamic changes in immune cell populations after bacterial infection have yet to be fully understood. Beijing-You chicken and Cobb broiler, two broiler breeds with different disease resistance, were infected with Salmonella typhimurium, and inflammation models were constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!