Purpose/background: Alzheimer disease (AD) is a public health issue because of the low number of symptomatic drugs and the difficulty to diagnose it at the prodromal stage. The need to develop new treatments and to validate sensitive tests for early diagnosis could be met by developing a challenge model reproducing cognitive impairments of AD. Therefore, we implemented a 24-hour sleep deprivation (SD) design on healthy volunteers in a randomized, double-blind, placebo-controlled, crossover study on 36 healthy volunteers.
Methods/procedure: To validate the SD model, cognitive tests were chosen to assess a transient worsening of cognitive functions after SD and a restoration under modafinil as positive control (one dose of 200 mg). Then, the same evaluations were replicated after 15 days of donepezil (5 mg/d) or memantine (10 mg/d). The working memory (WM) function was assessed by the N-back task and the rapid visual processing (RVP) task.
Findings/results: The accuracy of the N-back task and the reaction time of the RVP revealed the alteration of the WM with SD and its restoration with modafinil (changes in score after SD compared with baseline before SD), respectively, in the placebo group and in the modafinil group (-0.2% and +1.0% of satisfactory answers, P = 0.022; +21.3 and +1.9 milliseconds of reaction time, P = 0.025). Alzheimer disease drugs also tended to reverse this deterioration: the accuracy of the N-back task was more stable through SD (compared with -3.0% in the placebo group, respectively, in the memantine group and in the donepezil group: -1.4% and -1.6%, P = 0.027 and P = 0.092) and RVP reaction time was less impacted (compared with +41.3 milliseconds in the placebo group, respectively, in the memantine group and in the donepezil group: +16.1 and +29.3 milliseconds, P = 0.034 and P = 0.459).
Implications/conclusions: Our SD challenge model actually led to a worsening of WM that was moderated by both modafinil and AD drugs. To use this approach, the cognitive battery, the vulnerability of the subjects to SD, and the expected drug effect should be carefully considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/JCP.0000000000001199 | DOI Listing |
Sci Rep
December 2024
Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands.
The aetiology of Alzheimer's disease (AD) and Parkinson's disease (PD) are unknown and tend to manifest at a late stage in life; even though these neurodegenerative diseases are caused by different affected proteins, they are both characterized by neuroinflammation. Links between bacterial and viral infection and AD/PD has been suggested in several studies, however, few have attempted to establish a link between fungal infection and AD/PD. In this study we adopted a nanopore-based sequencing approach to characterise the presence or absence of fungal genera in both human brain tissue and cerebrospinal fluid (CSF).
View Article and Find Full Text PDFNat Commun
December 2024
Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.
View Article and Find Full Text PDFNat Commun
December 2024
Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.
View Article and Find Full Text PDFJ Neuroimaging
December 2024
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.
View Article and Find Full Text PDFBackground: Atrial fibrillation (AF) is associated with cognitive decline. Use of oral anticoagulant (OAC) medications offers a lower risk of dementia, but it is unclear whether differences exist between types of OAC agents.
Objective: This was a secondary analysis to explore whether the progression from normal cognition to mild cognitive impairment to dementia differs between adults with AF on warfarin versus non-vitamin K inhibitors medications (NOACs) using data extracted from the National Alzheimer's Coordinating Center clinical case series.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!