Immunological detection of pregnancy: Evidence for systemic immune modulation during early pregnancy in ruminants.

Theriogenology

Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA. Electronic address:

Published: July 2020

Mammalian pregnancy creates unique challenges for immune systems highly evolved to detect and eliminate invading pathogens. Recognition of the challenges created by gestating a semi-allogeneic fetus evolved from the discipline of transplantation biology and were informed by studies on the unique natural parabiosis that occurs when female calves are gestated with twin male fetuses. These pregnancies typically result in an intersex female termed a freemartin, which revealed insights into development of the male and female reproductive tracts. However, they also uncovered important clues on immune tolerance with wide-ranging implications to reproductive biology, transplantation biology and autoimmune disease. Many studies focused on identifying mechanisms through which the fetus evades maternal immune detection and elimination. These included studies characterizing immune interactions between the fetus and mother at the nourishing interface of the placenta and uterine endometrium. This immunological forbearance only occurs under high concentrations of circulating progesterone. Beyond the requirement for progesterone, there has been considerable progress towards understanding the effects of conceptus signals on maternal immune function. One common theme is that pregnancy induces a T helper 2 immune bias as shown in several mammalian species, including domestic ruminants. However, a growing body of evidence shows that the fetus not only evades, but also provokes immune responses locally in the uterus and in peripheral tissues. This is perhaps most dramatically illustrated by domestic ruminants where the conceptus secretes a unique interferon in the opening salvo of hormonal communication with the maternal immune system. The role of interferon tau in regulating expression of genes of the innate immune system in the uterus has been extensively studied. More recently, it was determined that these same genes are also induced in peripheral immune cells and other tissues throughout the body. In addition to interferon tau and progesterone, pregnancy associate glycoproteins and chaperonin 10 (aka Early Pregnancy Factor) are implicated in altering immune function both locally and systemically during pregnancy. While it is tempting to speculate that this activation of innate immunity is designed to counteract selective immunosuppression, knowledge of the importance of local and systemic immune activation to the success of pregnancy remains incomplete. This area remains fertile ground for developing better approaches to diagnose and treat infertility in domestic farm species and humans alike.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2020.04.010DOI Listing

Publication Analysis

Top Keywords

immune
13
maternal immune
12
pregnancy
8
systemic immune
8
early pregnancy
8
transplantation biology
8
fetus evades
8
immune function
8
domestic ruminants
8
immune system
8

Similar Publications

Immune checkpoint inhibitors have improved the treatment of metastatic renal cell carcinoma (RCC), with the combination of nivolumab (NIVO) and ipilimumab (IPI) showing promising results. However, not all patients benefit from these therapies, emphasizing the need for reliable, easily assessable biomarkers. This multicenter study involved 116 advanced RCC patients treated with NIVO + IPI across nine oncology centers in Poland.

View Article and Find Full Text PDF

Evaluating the Immunogenicity Risk of Protein Therapeutics by Augmenting T Cell Epitope Prediction with Clinical Factors.

AAPS J

January 2025

Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, California, USA.

Protein-based therapeutics may elicit undesired immune responses in a subset of patients, leading to the production of anti-drug antibodies (ADA). In some cases, ADAs have been reported to affect the pharmacokinetics, efficacy and/or safety of the drug. Accurate prediction of the ADA response can help drug developers identify the immunogenicity risk of the drug candidates, thereby allowing them to make the necessary modifications to mitigate the immunogenicity.

View Article and Find Full Text PDF

Effectiveness and safety of biosimilars in pediatric inflammatory bowel diseases: an observational longitudinal study on the French National Health Data System.

World J Pediatr

January 2025

EPI-PHARE, French National Agency for Medicines and Health Products Safety (ANSM) and French National Health Insurance (CNAM), 143-147 Boulevard Anatole France, 93285, Saint-Denis, France.

Background: Data on biosimilar use in pediatric inflammatory bowel diseases (IBD) are scarce compared to the status of studies in adults, resulting in limitations in its treatment. We compared effectiveness and safety of biosimilars versus originators in this population.

Methods: We used data from the French National Health Data System to identify children (less than 18 years old at treatment initiation) initiating treatment with a biosimilar or the originator infliximab or adalimumab for Crohn's disease (CD) or ulcerative colitis (UC), from first biosimilar launch (January 2015 and October 2018, respectively) to 31 December 2022.

View Article and Find Full Text PDF

Background: T cells are involved in every stage of tumor development and significantly influence the tumor microenvironment (TME). Our objective was to assess T-cell marker gene expression profiles, develop a predictive risk model for human papilloma virus (HPV)-negative oral squamous cell carcinoma (OSCC) utilizing these genes, and examine the correlation between the risk score and the immunotherapy response.

Methods: We acquired scRNA-seq data for HPV-negative OSCC from the GEO datasets.

View Article and Find Full Text PDF

Background: The clinical course of high-risk neuroblastoma patients remains suboptimal, and the dynamic and reversible nature of cellular senescence provides an opportunity to develop new therapies.

Objective: This study aims to identify unique markers of cellular senescence in neuroblastoma and to explore their clinical significance.

Methods: The impact of multiple genetic regulatory mechanisms on cellular senescence-associated genes (CSAGs) was first assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!