Identification of effective natural dyes with the potential for low environmental impact has been a recent focus of the textile industry. Pigments derived from spalting fungi have previously shown promise as textile dyes; however, their use has required numerous organic solvents with human health implications. This research explored the possibility of using linseed oil as a carrier for the pigment from as a textile dye. Colored linseed oil effectively dyed a range of fabrics, with natural fibers showing better coloration. Scanning electron microscopy (SEM) revealed a pigment film over the fabric surface. While mechanical testing showed no strength loss in treated fabric, colorfastness tests showed significant changes in color in response to laundering and bleach exposure with variable effects across fabric varieties. SEM investigation confirmed differences in pigmented oil layer loss and showed variation in pigment crystal formation between fabric varieties. Heating of the pigmented oil layer was found to result in a bright, shiny fabric surface, which may have potential for naturally weatherproof garments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345869 | PMC |
http://dx.doi.org/10.3390/jof6020053 | DOI Listing |
Curr Med Chem
January 2025
School of Pharmacy, Changzhou University, Changzhou, 213164, China.
Curcumin is a natural plant pigment that has been widely used in food production, drug development, and textile engineering. Gaining a deep understanding of the biological activities of curcumin and obtaining high-purity curcumin are of vital importance for basic research and applications of curcumin. In this review, we summarize recent advances in curcumin, mainly focusing on the methods of extracting and purifying curcumin from turmeric as well as applications based on biological activity.
View Article and Find Full Text PDFMar Drugs
January 2025
Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Campus Caparica, 2829-516 Caparica, Portugal.
Pigment production has a substantial negative impact on the environment, since mining for natural pigments causes ecosystem degradation, while synthetic pigments, derived from petrochemicals, generate toxic by-products that accumulate and persist in aquatic systems due to their resistance to biodegradation. Despite these challenges, pigments remain essential across numerous industries, including the cosmetic, textile, food, automotive, paints and coatings, plastics, and packaging industries. In response to growing consumer demand for sustainable options, there is increasing interest in eco-friendly alternatives, particularly bio-based pigments derived from algae, fungi, and actinomycetes.
View Article and Find Full Text PDFJ Nat Prod
January 2025
Fungal Natural Products Group, Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, Netherlands.
Xylindein is a blue-green pigment produced by the fungi and Its stunning color and optoelectronic properties make xylindein valuable for textiles and as a natural semiconductor material. However, producing xylindein from culture broths remains challenging because of the slow growth of the species and the poor solubility of xylindein in organic solvents. An alternative production route for obtaining pure xylindein is heterologous expression of the xylindein biosynthetic genes.
View Article and Find Full Text PDFPlanta
January 2025
School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, People's Republic of China.
Brown cotton and white cotton are two important raw materials used in the cotton fiber industry. Clarifying the differences in morphology, agronomic traits, and fiber pigments between these varieties can facilitate the implementation of corresponding cultivation and breeding techniques. Therefore, we obtained F generation brown cotton plants through hybridization and compared them with their parents.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Dokki, Giza, Egypt.
The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!