Location-based routing protocols for vehicular ad hoc networks (VANETs) use location information to determine routing decisions. This information is provided by a location service that is queried by nodes in order to properly forward packets to communication partners. This paper presents the semiflooding location service, a proactive flooding-based location service that drastically reduces the number of update packets sent over the network compared to traditional flooding-based location services. This goal is achieved by each node partially forwarding location information. We present both deterministic and probabilistic approaches for this algorithm, which remains very simple. A mathematical model is proposed to show the effectiveness of this solution. The cases of homogeneous 1D, 2D, and 3D networks were studied for both deterministic and probabilistic forwarding decisions. We compare our algorithm with simple flooding and with the multipoint-relay (MPR) flooding of the optimized-link-state-routing (OLSR) protocol, and we show that our algorithm, despite being very simple, has excellent scalability properties. The mean number of generated messages ranges with the mean number of the neighbors of one random network node.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219327 | PMC |
http://dx.doi.org/10.3390/s20082389 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!