The IEEE 802.15.6 standard has the potential to provide cost-effective and unobtrusive medical services to individuals with chronic health conditions. It is a low-power standard developed for wireless body area networks and enables wireless communication inside or near a human body. This standard utilizes a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol to improve network performance under different channel access priorities. However, the CSMA/CA proposed in the IEEE 802.15.6 standard has poor throughput performance and link reliability when some of the nodes deployed on a human body are hidden from each other. We employ the RTS/CTS scheme to solve hidden node problems in IEEE 802.15.6 networks over a lossy channel. To improve performance of the RTS/CTS scheme, we adjust transmission power levels of the nodes according to transmission failures. We estimate throughput and energy consumption of the proposed model by differentiating several parameters, such as contention window size, values of bit error ratios, number of nodes in different priority classes. The performance results are obtained through analytical approximations and simulations. We observe that the proposed model significantly improves performance of the IEEE 802.15.6 CSMA/CA by resolving hidden node problems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219348 | PMC |
http://dx.doi.org/10.3390/s20082368 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt.
This article presents an innovative asymmetric multilevel inverter (MLI) topology that outperforms conventional counterparts. The introduced topology presents a breakthrough in implementing power electronics control by maximizing specific levels while minimizing switching components. A cutting-edge control scheme for optimal operation of the cascaded half-bridge MLI is presented.
View Article and Find Full Text PDFJMIR Serious Games
January 2025
Department of Interactive Visualization and Virtual Reality, Faculty of Engineering, University of Talca, Talca, Chile.
Background: Serious games play a fundamental role in promoting safe sexual behaviors. This medium has great potential for promoting healthy behaviors that prevent potential risk factors, such as sexually transmitted infections, and promote adherence to sexual health treatments, such as antiretroviral therapy. The ubiquity of mobile devices enhances access to such tools, increasing the effectiveness of video games as agents of change.
View Article and Find Full Text PDFHeliyon
January 2025
Centre for Artificial Intelligence Research and Optimisation, Torrens University, Brisbane, QLD, 4006, QLD 4006, Austral, Australia.
This paper presents the Multi-Objective Ant Nesting Algorithm (MOANA), a novel extension of the Ant Nesting Algorithm (ANA), specifically designed to address multi-objective optimization problems (MOPs). MOANA incorporates adaptive mechanisms, such as deposition weight parameters, to balance exploration and exploitation, while a polynomial mutation strategy ensures diverse and high-quality solutions. The algorithm is evaluated on standard benchmark datasets, including ZDT functions and the IEEE Congress on Evolutionary Computation (CEC) 2019 multi-modal benchmarks.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Ophthalmology, The Affiliated Hospital of Guilin Medical University, Guilin, China.
Optical coherence tomography angiography (OCTA) is an emerging, non-invasive technique increasingly utilized for retinal vasculature imaging. Analysis of OCTA images can effectively diagnose retinal diseases, unfortunately, complex vascular structures within OCTA images possess significant challenges for automated segmentation. A novel, fully convolutional dense connected residual network is proposed to effectively segment the vascular regions within OCTA images.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
January 2025
Duke University Medical Center, Durham, NC, 27710, USA.
Background: Non-invasive, continuous blood pressure monitoring technologies require additional validation beyond standard cuff-based methods. This study evaluates a non-invasive, multiparametric wearable cuffless blood pressure (BP) diagnostic monitor across all hypertension classes with diverse subjects.
Methods: A prospective, multicenter study assessed Nanowear's SimpleSense-BP performance, including induced and natural BP changes, significant BP variations (Systolic BP (SBP) ≥ ± 15 mm Hg and Diastolic BP (DBP) ≥ ± 10 mm Hg), and reference input value validity over 4 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!