The purpose of this study was to examine the effect of plasma treatment by treating the surface of Co-Cr alloy, Ti-6Al-4V alloy, and CP-Ti alloy as a material for denture metal frameworks with non-thermal atmospheric pressure plasma (NTAPP) and measuring their shear bond strength (SBS) with a heat-cured resin. 20 specimens were prepared for each of Co-Cr, Ti-6Al-4V, and CP-Ti alloys. Each metal alloy group was divided into the following subgroups depending on NTAPP treatment: C (Co-Cr alloy without plasma), T (CP-Ti without plasma), A (Ti-6Al-4V alloy without plasma), CP (Co-Cr alloy with plasma), TP (CP-Ti with plasma) and AP (Ti-6Al-4V alloy with plasma). Specimens were treated with a metal conditioner and bonded to a denture base resin. SBS was measured using a universal testing machine. All data obtained were statistically analyzed using two-way analysis of variance (ANOVA), Tukey's honestly significant difference (HSD) test, and independent -test. The mean values (SD) of SBS (MPa) were: 10.31 (1.19) for C group; 12.43 (0.98) for T group; 13.75 (2.02) for A group; 13.53 (1.61) for CP group; 16.87 (1.55) for TP group; 17.46 (1.65) for AP group. The SBS of the AP group was the highest while that of the C group was the lowest. SBS of specimen treated with NTAPP was significantly increased regardless of metal alloy types ( < 0.001). Within the limitations of this study, NTAPP can increases the SBS of Co-Cr alloy, CP-Ti alloy, and Ti-6Al-4V alloy with a denture base resin.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.17630DOI Listing

Publication Analysis

Top Keywords

co-cr alloy
20
ti-6al-4v alloy
20
alloy plasma
16
alloy
15
denture base
12
base resin
12
alloy ti-6al-4v
12
alloy cp-ti
12
cp-ti alloy
12
plasma
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!