Novel phosphorus-based 2D allotropes with ultra-high mobility.

Nanotechnology

Department of Physics, Panjab University, Chandigarh 160014, India. Department of Physics, Michigan Technological University, Houghton, MI 49931, United States of America.

Published: August 2020

Electronic structure calculations based on density functional theory were performed to investigate structural, mechanical, and electronic properties of phosphorene-based large honeycomb dumbbell (LHD) hybrid structures and a new phosphorene allotrope, referred to as ψ″-P. The LHD hybrids (i.e., XP; X being C or Si or Ge or Sn) and ψ″-P have significantly higher bandgaps than the corresponding pristine LHD structures, except the case of CP, which is metallic. ψ″-P is found to be a highly flexible p-type material which shows strain-engineered photocatalytic activity in a highly alkaline medium. The carrier mobility of the considered systems is as high as 10 cm V s (specifically the electron mobility of LHD structures). The calculated STM images display the surface morphologies of the LHD hybrids and ψ″-P. The predicted phosphorus-based 2D structures with novel electronic properties may be candidate materials for nanoscale devices.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab8cf1DOI Listing

Publication Analysis

Top Keywords

electronic properties
8
lhd hybrids
8
hybrids ψ″-p
8
lhd structures
8
lhd
5
novel phosphorus-based
4
phosphorus-based allotropes
4
allotropes ultra-high
4
ultra-high mobility
4
mobility electronic
4

Similar Publications

Recursive hierarchical parametric identification of Wiener-Hammerstein systems based on initial value optimization.

ISA Trans

January 2025

Institute of Artificial Intelligence and Future Networks, Beijing Normal University at Zhuhai, Zhuhai, China; BNU-HKBU United International College Tangjiawan, Rd. JinTong 2000#, Zhuhai, China. Electronic address:

In this paper, a novel recursive hierarchical parametric identification method based on initial value optimization is proposed for Wiener-Hammerstein systems subject to stochastic measurement noise. By transforming the traditional Wiener-Hammerstein system model into a generalized form, the system model parameters are uniquely expressed for estimation. To avoid cross-coupling between estimating block-oriented model parameters, a hierarchical identification algorithm is presented by dividing the parameter vector into two subvectors containing the coupled and uncoupled terms for estimation, respectively.

View Article and Find Full Text PDF

Cobalt regulation biocathode with sulfate-reducing bacteria for enhancing the reduction of antimony and the removal of sulfate in a microbial electrolysis cell simultaneously.

Environ Res

January 2025

School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:

Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.

View Article and Find Full Text PDF

Uncovering the naturally occurring covalent inhibitors of SARS-CoV-2 M from the Chinese medicine sappanwood and deciphering their synergistic anti-M effects.

J Ethnopharmacol

January 2025

Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014. Electronic address:

Ethnopharmacological Relevance: The Chinese medicine sappanwood is primarily sourced from the dried heartwood of the medicinal plant Caesalpinia sappan Linn., which has been found with a variety of valuable properties including anti-inflammatory, anti-oxidant, and anti-viral effects. Preliminary investigations have demonstrated that sappanwood showed strong anti-SARS-CoV-2 M effects, but the key constituents responsible for SARS-CoV-2 M inhibition and their anti-M mechanisms have not been uncovered.

View Article and Find Full Text PDF

Pharmacological modulation of Sigma-1 receptor ameliorates pathological neuroinflammation in rats with diabetic neuropathic pain via the AKT/GSK-3β/NF-κB pathway.

Brain Res Bull

January 2025

Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China. Electronic address:

Diabetic neuropathic pain (DNP) is a common complication of diabetes mellitus (DM) and is characterized by spontaneous pain and neuroinflammation. The Sigma-1 receptor (Sig-1R) has been proposed as a target for analgesic development. It is an important receptor with anti-inflammatory properties and has been found to regulate DNP.

View Article and Find Full Text PDF

Iron-based driven chitosan quaternary ammonium salt self-gelling powder: Sealing uncontrollable bleeding and promoting wound healing.

Int J Biol Macromol

January 2025

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Uncontrollable bleeding poses a significant risk of death and cost in wars, vehicle accidents, and first aid. Hence, in order to seal uncontrollable bleeding and promote wound healing, the Fe-driven chitosan quaternary ammonium salt self-gelling powder (QPF) was prepared using 5%QCS/AA/Fe with the 52.72 % ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!