Cellular community detection for tissue phenotyping in colorectal cancer histology images.

Med Image Anal

Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK; Department of Pathology, University Hospitals Coventry & Warwickshire NHS Trust, Walsgrave, Coventry, CV2 2DX, UK; The Alan Turing Institute, London, UK. Electronic address:

Published: July 2020

AI Article Synopsis

Article Abstract

Classification of various types of tissue in cancer histology images based on the cellular compositions is an important step towards the development of computational pathology tools for systematic digital profiling of the spatial tumor microenvironment. Most existing methods for tissue phenotyping are limited to the classification of tumor and stroma and require large amount of annotated histology images which are often not available. In the current work, we pose the problem of identifying distinct tissue phenotypes as finding communities in cellular graphs or networks. First, we train a deep neural network for cell detection and classification into five distinct cellular components. Considering the detected nuclei as nodes, potential cell-cell connections are assigned using Delaunay triangulation resulting in a cell-level graph. Based on this cell graph, a feature vector capturing potential cell-cell connection of different types of cells is computed. These feature vectors are used to construct a patch-level graph based on chi-square distance. We map patch-level nodes to the geometric space by representing each node as a vector of geodesic distances from other nodes in the network and iteratively drifting the patch nodes in the direction of positive density gradients towards maximum density regions. The proposed algorithm is evaluated on a publicly available dataset and another new large-scale dataset consisting of 280K patches of seven tissue phenotypes. The estimated communities have significant biological meanings as verified by the expert pathologists. A comparison with current state-of-the-art methods reveals significant performance improvement in tissue phenotyping.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2020.101696DOI Listing

Publication Analysis

Top Keywords

tissue phenotyping
12
histology images
12
cancer histology
8
tissue phenotypes
8
potential cell-cell
8
graph based
8
tissue
6
cellular
4
cellular community
4
community detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!