The exposome calls for assessing numerous exposures, typically using biomarkers with varying amounts of measurement error, which can be assumed to be of classical type. We evaluated the impact of classical-type measurement error on the performance of exposome-health studies, and the efficiency of two measurement error correction methods relying on the collection of repeated biospecimens: within-subject biospecimens pooling and regression calibration. In a simulation study, we generated 237 exposures from a realistic correlation matrix, with various amounts of classical-type measurement error, and a continuous health outcome linearly influenced by exposures. Measurement error decreased the sensitivity to identify exposures influencing health from a value of 75% down to 46%, increased false discovery proportion from 26% to 49% and increased attenuation bias in the slope of true predictors from 45% to 66%. Assuming that repeated biospecimens were available, within-subject pooling and regression calibration improved sensitivity (which increased to 63%), false discovery proportion (down to 37%) and bias (down to 49%) compared to an error-prone study with a single biospecimen per subject. Performances were poorer for the exposures with the largest amount of measurement error, and increased with the number of available biospecimens. Relying on repeated biospecimens only for the exposures with the largest amount of measurement error provided similar performance improvement. Exposome studies relying on spot exposure biospecimens suffer from decreased performances if some biomarkers suffer from measurement error due to their temporal variability; performances can be improved by collecting repeated biospecimens per subject, in particular for non persistent chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2020.109492DOI Listing

Publication Analysis

Top Keywords

measurement error
36
repeated biospecimens
20
measurement
9
error
9
relying repeated
8
biospecimens
8
classical-type measurement
8
biospecimens within-subject
8
pooling regression
8
regression calibration
8

Similar Publications

Including sensor information in medical interventions aims to support surgeons to decide on subsequent action steps by characterizing tissue intraoperatively. With bladder cancer, an important issue is tumor recurrence because of failure to remove the entire tumor. Impedance measurements can help to classify bladder tissue and give the surgeons an indication on how much tissue to remove.

View Article and Find Full Text PDF

Research on the high precision hydraulic column stress monitoring method.

Sci Rep

January 2025

Shandong Yankuang Intelligent Manufacturing Co., Jining, 272000, China.

The hydraulic column is a core component in the coal mine support system, however, the real-time monitoring of the hydraulic column during the service process of the hydraulic support faces challenges. To address these issues, a high-precision stress mapping method of hydraulic column is proposed. The hydraulic column loss function was constructed to guide the data-driven model training, and the cylinder stress mechanism model was established by using the elastic-plastic theory of thick-walled cylinder.

View Article and Find Full Text PDF

Introduction: Traumatic injuries are a significant public health concern globally, resulting in substantial mortality, hospitalisation and healthcare burden. Despite the establishment of specialised trauma centres, there remains considerable variability in trauma-care practices and outcomes, particularly in the initial phase of trauma resuscitation in the trauma bay. This stage is prone to preventable errors leading to adverse events (AEs) that can impact patient outcomes.

View Article and Find Full Text PDF

Objectives: To examine the validity and reliability of the Simple Motor Competence-check for Kids (SMC-Kids), which was developed to assess motor development in preschool children.

Design: A cross-sectional and repeated-measures design.

Methods: To assess validity, 71 children aged 4-6 years completed the Test of Gross Motor Development-3 (TGMD-3) and SMC-Kids (10 m shuttle run and paper ball throw).

View Article and Find Full Text PDF

Background: Respiratory motion during radiotherapy (RT) may reduce the therapeutic effect and increase the dose received by organs at risk. This can be addressed by real-time tracking, where respiration motion prediction is currently required to compensate for system latency in RT systems. Notably, for the prediction of future images in image-guided adaptive RT systems, the use of deep learning has been considered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!