Keratinocyte hyperproliferation has been regarded as a central event in psoriasis pathogenesis. Investigating the mechanisms of keratinocyte hyperproliferation might provide novel strategies for psoriasis treatment. we demonstrated that fibroblast growth factor receptor 2 (FGFR2) expression was abnormally upregulated within psoriatic lesion tissues and HaCaT cells under rIL-22 stimulation. FGFR2 silence within HaCaT cells under rIL-22 stimulation significantly inhibited the capacity of cells to proliferate and to migrate, reduced IL-17A and TNFα mRNA expression, and decreased the protein levels of FGFR2, keratin 6, keratin 16, MMP1, MMP9, p-PI3K, p-AKT and p-ERK. In contrast to FGFR2, the expression of miR-124-3p showed to be remarkably downregulated within psoriasis lesion tissue samples and rIL-22-stimulated HaCaT cells. miR-124-3p inhibited the expression of FGFR2 via direct binding to its 3'UTR. Within HaCaT cells under rIL-22 stimulation, the overexpression of miR-124-3p also suppressed the capacity of cells to proliferate and to migrate, reduced IL-17A and TNFα mRNA expression, and decreased the protein levels of FGFR2, keratin 6, keratin 16, MMP1, MMP9 and p-PI3K, p-AKT and p-ERK. More importantly, when co-transfected to HaCaT cells, FGFR2-overexpressing vector significantly attenuated the effects of miR-124-3p mimics on HaCaT cells. In conclusion, we demonstrated an miR124-3p/FGFR2 axis that might inhibit human keratinocyte proliferation, migration, and improve the inflammatory microenvironment in psoriasis. miR124-3p/FGFR2 axis could be an underlying target for psoriasis therapy, which requires further in vivo and clinical investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2020.04.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!