A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adsorption of a styrene maleic acid (SMA) copolymer-stabilized phospholipid nanodisc on a solid-supported planar lipid bilayer. | LitMetric

Adsorption of a styrene maleic acid (SMA) copolymer-stabilized phospholipid nanodisc on a solid-supported planar lipid bilayer.

J Colloid Interface Sci

Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 ODE, UK; ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK; Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK; European Spallation Source ERIC, P.O Box 176, SE-221 00 Lund, Sweden. Electronic address:

Published: August 2020

Over recent years, there has been a rapid development of membrane-mimetic systems to encapsulate and stabilize planar segments of phospholipid bilayers in solution. One such system has been the use of amphipathic copolymers to solubilize lipid bilayers into nanodiscs. The attractiveness of this system, in part, stems from the capability of these polymers to solubilize membrane proteins directly from the host cell membrane. The assumption has been that the native lipid annulus remains intact, with nanodiscs providing a snapshot of the lipid environment. Recent studies have provided evidence that phospholipids can exchange from the nanodiscs with either lipids at interfaces, or with other nanodiscs in bulk solution. Here we investigate kinetics of lipid exchange between three recently studied polymer-stabilized nanodiscs and supported lipid bilayers at the silicon-water interface. We show that lipid and polymer exchange occurs in all nanodiscs tested, although the rate and extent differs between different nanodisc types. Furthermore, we observe adsorption of nanodiscs to the supported lipid bilayer for one nanodisc system which used a polymer made using reversible addition-fragmentation chain transfer polymerization. These results have important implications in applications of polymer-stabilized nanodiscs, such as in the fabrication of solid-supported films containing membrane proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7276985PMC
http://dx.doi.org/10.1016/j.jcis.2020.04.013DOI Listing

Publication Analysis

Top Keywords

lipid
8
lipid bilayer
8
lipid bilayers
8
nanodiscs
8
membrane proteins
8
polymer-stabilized nanodiscs
8
nanodiscs supported
8
supported lipid
8
adsorption styrene
4
styrene maleic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!