Particulate matter exposure disturbs inflammatory cytokine homeostasis associated with changes in trace metal levels in mouse organs.

Sci Total Environ

State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, China. Electronic address:

Published: July 2020

AI Article Synopsis

Article Abstract

Few studies have focused on the impact of particulate matter (PM) exposure with respect to the relationship between PM-induced inflammation and the levels of trace metals in tissues and organs. In this study, C57BL/6 male mice were exposed to ambient air alongside control mice breathing air filtered through a high-efficiency particulate air (HEPA) filter. In both groups, mRNA levels of pro- and anti-inflammatory cytokines were measured after 4, 8 and 12 weeks together with the trace metal contents of the lungs, heart, liver, hippocampus and blood. PM exposure resulted in a general upward trend in the levels of pro-inflammatory cytokines in lung, heart, liver and hippocampus. By contrast, IL-10 mRNA expression varied depending on the organ, with a continuous upward trend in heart and liver and an up-regulation at 8 weeks followed by a down-regulation at 12 weeks in lung and hippocampus. The disturbed homeostasis of inflammatory cytokines was accompanied by changes in trace metal levels in the mice. These alterations may have constituted a compensatory effect conferring protection from inflammatory damage. However, prolonged PM exposure finally resulted in the deficiency of several essential trace metals in the lungs and hippocampus, which may have contributed to the observed histological changes typical of an inflammatory response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138377DOI Listing

Publication Analysis

Top Keywords

trace metal
12
heart liver
12
particulate matter
8
matter exposure
8
changes trace
8
metal levels
8
trace metals
8
liver hippocampus
8
upward trend
8
trace
5

Similar Publications

Aquatic toxicology, as a result of industrial and agrieqcultural effluences, has become a global concern impacting not only the well-being of aquatic organisms but human health as well. The current study evaluated the impact of four toxic trace elements (TTEs) Cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) in three organs (liver, gills, and muscles) of five fish species viz, Rita rita, Sperata sarwari, Wallago attu, Mastacembelus armatus, and Cirrhinus mrigala collected from right and left banks of Punjnad headworks during winter, spring, and summer. We investigated the accumulation (mg/kg) of these TTEs in fish in addition to the human health risk assessment.

View Article and Find Full Text PDF

Agricultural pollutants co-interact and affect the vital functions, stress tolerance, resistance, immunity, and survival of insect pests. These metal-herbicide interactions have inevitable but remarkable effects on insects, which remain poorly understood. Here, we examined the effects of the interactions among zinc (Zn), iron (Fe), and paraquat (PQ) at a sublethal dose on the physiological response of the Egyptian cotton leafworm .

View Article and Find Full Text PDF

This study investigated the elemental composition of , addressing the gap in comprehensive trace element profiling of this medicinal plant. The research aimed to determine the distribution of macronutrients, micronutrients, and beneficial and potentially toxic elements across different plant parts (seeds, leaves, stems, and roots). Using ICP-OES analysis, two digestion methods were employed to capture both complex and labile elements.

View Article and Find Full Text PDF

Taxonomic Identification and Nutritional Analysis of in Zhanjiang.

Mar Drugs

December 2024

The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523326, China.

To evaluate the nutritional value and development potential of in the marine environment of Naozhou Island, Zhanjiang, this study conducted species classification and identification, followed by an analysis of key nutritional components. The combination of morphological and molecular results confirmed the identification of the collected samples as . Further analysis showed that in Zhanjiang had a moisture content of 74.

View Article and Find Full Text PDF

Since the biological activities and toxicities of 'foreign' and/or excess levels of metal ions are predominantly determined by their precise molecular nature, here we have employed high-resolution H NMR analysis to explore the 'speciation' of paramagnetic Ni(II) ions in human saliva, a potentially rich source of biomolecular Ni(II)-complexants/chelators. These studies are of relevance to the corrosion of nickel-containing metal alloy dental prostheses (NiC-MADPs) in addition to the dietary or adverse toxicological intake of Ni(II) ions by humans. Unstimulated whole-mouth human saliva samples were obtained from n = 12 pre-fasted (≥8 h) healthy participants, and clear whole-mouth salivary supernatants (WMSSs) were obtained from these via centrifugation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!