Chronic inflammation, Adverse Outcome Pathways, and risk assessment: A diagrammatic exposition.

Regul Toxicol Pharmacol

Gradient, One Beacon Street, 17th Floor, Boston, MA, 02108, USA. Electronic address:

Published: July 2020

Inflammasomes are a family of pro-inflammatory signaling complexes that orchestrate inflammatory responses in many tissues. The NLRP3 inflammasome has been implicated in several diseases associated with chronic inflammation. In this paper, we present an Adverse Outcome Pathway (AOP) for NLRP3-induced chronic inflammatory diseases that demonstrates how NLRP3 can cause a transition from acute to chronic inflammation, and ultimately the onset of disease. We present a simple graphical description of the main features of internal dose time courses that are important when pharmacodynamics are governed by an activation threshold. Similar considerations hold for other AOPs that are rate-limited by processes with activation thresholds. The risk analysis implications of AOPs with threshold or threshold-like pharmacodynamic responses include the need to consider how cumulative dose per unit time is distributed over time and the possibility that safe, or virtually safe, exposure concentrations can be defined for such processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yrtph.2020.104663DOI Listing

Publication Analysis

Top Keywords

chronic inflammation
12
adverse outcome
8
chronic
4
inflammation adverse
4
outcome pathways
4
pathways risk
4
risk assessment
4
assessment diagrammatic
4
diagrammatic exposition
4
exposition inflammasomes
4

Similar Publications

In chronic kidney disease (CKD), hyperuricemia is a common phenomenon, presumably due to reduced renal clearance of uric acid. This study investigated the effect of xanthine oxidase (XO) inhibitors allopurinol and febuxostat to prevent oxidative stress in the kidney of two-kidney, one-clip (2K1C) rats. In this investigation, 2K1C rats were used as an experimental animal model for kidney dysfunction.

View Article and Find Full Text PDF

Post-pandemic insights on COVID-19 and premature ovarian insufficiency.

Open Life Sci

January 2025

Department of Medicine, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 411 Guogeli Street, Nangang District, Harbin, Heilongjiang, 150006, P.R. China.

The COVID-19 pandemic has raised concerns regarding its potential impact on premature ovarian insufficiency (POI). This overview examines the possible interactions between COVID-19 and POI, while also suggesting preventive measures. The viral infection's inflammatory response and immune dysregulation may adversely affect ovarian tissues, leading to inflammation and damage.

View Article and Find Full Text PDF

Background And Objective: Periodontitis and dental caries are among the most prevalent oral diseases, with chronic periodontitis being a multifactorial, infectious condition that leads to inflammation in the supporting structures of the teeth, progressive attachment loss, and bone resorption. Chronic periodontitis is driven by a consortium of pathogenic microorganisms. This study aimed to evaluate the efficacy of virgin coconut oil (VCO) pulling in reducing the microbial load and inflammatory mediators responsible for chronic periodontitis, in comparison to chlorhexidine (CHX) mouthwash and distilled water.

View Article and Find Full Text PDF

Introduction: Hepatitis B and C are viral infections causing chronic liver inflammation and, when left untreated, lead to cirrhosis and a risk for hepatocellular carcinoma, the most common type of primary liver cancer with high mortality. The hepatitis B virus-hepatitis C virus (HBV-HCV) coinfection leads to a faster progression to advanced liver diseases and higher hepatocellular carcinoma (HCC) risk than monoinfection. Unlike the relative risk for HCC due to either HBV or HCV, no recent analysis of the risk for HBV-HCV coinfection exists.

View Article and Find Full Text PDF

Senotherapy: Implications for Transplantation.

Transplantation

January 2025

Interdisciplinary Transplantation, Children's Hospital, Hannover Medical School, Hannover, Germany.

Cellular senescence has been identified as a potential driver of age-associated loss of organ function and as a mediator of age-related disease. Novel strategies in targeting senescent cells have shown promise in several organ systems to counteract functional decline, chronic inflammation, and age-dependent loss of repair capacity. Transgenic models have provided proof of principle that senolysis, the elimination of senescent cells, is an attractive strategy to overcome many age-related pathologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!