Coronavirus disease (Covid-19) has reached unprecedented pandemic levels and is affecting almost every country in the world. Ramping up the testing capacity of a country supposes an essential public health response to this new outbreak. A pool testing strategy where multiple samples are tested in a single reverse transcriptase-polymerase chain reaction (RT-PCR) kit could potentially increase a country's testing capacity. The aim of this study is to propose a simple mathematical model to estimate the optimum number of pooled samples according to the relative prevalence of positive tests in a particular healthcare context, assuming that if a group tests negative, no further testing is done whereas if a group tests positive, all the subjects of the group are retested individually. The model predicts group sizes that range from 11 to 3 subjects. For a prevalence of 10% of positive tests, 40.6% of tests can be saved using testing groups of four subjects. For a 20% prevalence, 17.9% of tests can be saved using groups of three subjects. For higher prevalences, the strategy flattens and loses effectiveness. Pool testing individuals for severe acute respiratory syndrome coronavirus 2 is a valuable strategy that could considerably boost a country's testing capacity. However, further studies are needed to address how large these groups can be, without losing sensitivity on the RT-PCR. The strategy best works in settings with a low prevalence of positive tests. It is best implemented in subgroups with low clinical suspicion. The model can be adapted to specific prevalences, generating a tailored to the context implementation of the pool testing strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264525 | PMC |
http://dx.doi.org/10.1002/jmv.25929 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!