Immobilizing a signaling protein to guide cell behavior has been employed in a wide variety of studies. This approach draws inspiration from biology, where specific, affinity-based interactions between membrane receptors and immobilized proteins in the extracellular matrix guide many developmental and homeostatic processes. Synthetic immobilization approaches, however, do not necessarily recapitulate the signaling system and potentially lead to artificial receptor-ligand interactions. To investigate the effects of one example of engineered receptor-ligand interactions, we focus on the immobilization of interferon-γ (IFN-γ), which has been used to drive differentiation of neural stem cells (NSCs). To isolate the effect of ligand immobilization, we transfected Cos-7 cells with only interferon-γ receptor 1 (IFNγR1), not IFNγR2, so that the cells could bind IFN-γ but were incapable of canonical signal transduction. We then exposed the cells to surfaces containing covalently immobilized IFN-γ and studied membrane morphology, receptor-ligand dynamics, and receptor activation. We found that exposing cells to immobilized but not soluble IFN-γ drove the formation of filopodia in both NSCs and Cos-7, showing that covalently immobilizing IFN-γ is enough to affect cell behavior, independently of canonical downstream signaling. Overall, this work suggests that synthetic growth factor immobilization can influence cell morphology beyond enhancing canonical cell responses through the prolonged signaling duration or spatial patterning enabled by protein immobilization. This suggests that differentiation of NSCs could be driven by canonical and non-canonical pathways when IFN-γ is covalently immobilized. This finding has broad implications for bioengineering approaches to guide cell behavior, as one ligand has the potential to impact multiple pathways even when cells lack the canonical signal transduction machinery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243121 | PMC |
http://dx.doi.org/10.1021/acs.bioconjchem.0c00105 | DOI Listing |
Assay Drug Dev Technol
January 2025
University Institute of Pharmacy, Pandit Ravishankar Shukla University, Raipur, India.
ACS Appl Mater Interfaces
January 2025
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
T-cell-engaging bispecific antibodies (BiTEs), which can simultaneously bind to antigens on tumor cells and T cells, show good potential in cancer immunotherapy. A practical and feasible approach for emulating BiTEs involves immobilizing two types of monoclonal antibodies (mAbs) onto a single nanoparticle; however, this approach involves complex immobilization processes and chemical reactions. To overcome these challenges, we achieved gentle antibody immobilization through receptor-ligand interactions by constructing a mAb delivery system known as Fcγ receptor 1 (FcγR1)-expressing cell membrane-coated nanoparticles (abbreviated as FcγR1-CMNPs).
View Article and Find Full Text PDFElife
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.
The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
In this study, we delve into the intrinsic mechanisms of cell communication in hepatocellular carcinoma (HCC). Initially, employing single-cell sequencing, we analyze multiple malignant cell subpopulations and cancer-associated fibroblast (CAF) subpopulations, revealing their interplay through receptor-ligand interactions, with a particular focus on SPP1. Subsequently, employing unsupervised clustering analysis, we delineate two clusters, C1 and C2, and compare their infiltration characteristics using various tools and metrics, uncovering heightened cytotoxicity and overall invasion abundance in C1.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cell types and their heterogeneity within the human liver, but the spatial organization at single-cell resolution has not yet been described. Here we apply multiplexed error robust fluorescent in situ hybridization (MERFISH) to map the zonal distribution of hepatocytes, spatially resolve subsets of macrophage and mesenchymal populations, and investigate the relationship between hepatocyte ploidy and gene expression within the healthy human liver. Integrating spatial information from MERFISH with the more complete transcriptome produced by single-nucleus RNA sequencing (snRNA-seq), also reveals zonally enriched receptor-ligand interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!