The efficient backbone-directed self-assembly of cyclic metalla[3]catenanes by the combination of tetrachloroperylenediimide (TCPDI)-based dinuclear rhodium(III) clips and 4,4'-diazopyridine or 4,4'-dipyridylethylene ligands is realized in a single-step strategy. The topology and coordination geometry of the cyclic metalla[3]catenanes are characterized by NMR spectroscopy, ESI-TOF-MS spectrometry, UV/Vis-NIR spectroscopy, and X-ray diffraction studies. The most remarkable feature of the formed cyclic metalla[3]catenane is that it contains π-aggregates (ca. 2.6 nm) incorporating six TCPDIs. Further studies revealed that cyclic metalla[3]catenanes can be converted reversibly to their corresponding sodium adducts and precursor building blocks, respectively. This strategy opens the possibility of generating unique supramolecular structures from discrete functional π-aggregates with precise arrangements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202004112 | DOI Listing |
J Am Chem Soc
March 2023
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China.
J Am Chem Soc
August 2021
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu road, Shanghai 200438, P. R. China.
One fascinating and challenging synthetic target in the field of mechanically interlocked molecules is the family of linear [4]catenanes, which are topologically identical to the logo of automobile maker Audi. Herein, we report an "all-in-one" synthetic strategy for the synthesis of linear metalla[]catenanes ( = 2-4) by the coordination-driven self-assembly of Cp*Rh-based (Cp* = η-pentamethylcyclopentadienyl) organometallic rectangle π-donors and tetracationic organic cyclophane π-acceptors. We selected the pyrenyl group as the π-donor unit, leading to homogeneous metalla[2]catenanes and cyclic metalla[3]catenanes via π-stacking interactions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2020
Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
The efficient backbone-directed self-assembly of cyclic metalla[3]catenanes by the combination of tetrachloroperylenediimide (TCPDI)-based dinuclear rhodium(III) clips and 4,4'-diazopyridine or 4,4'-dipyridylethylene ligands is realized in a single-step strategy. The topology and coordination geometry of the cyclic metalla[3]catenanes are characterized by NMR spectroscopy, ESI-TOF-MS spectrometry, UV/Vis-NIR spectroscopy, and X-ray diffraction studies. The most remarkable feature of the formed cyclic metalla[3]catenane is that it contains π-aggregates (ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!