Target-Directed Azide-Alkyne Cycloaddition for Assembling HIV-1 TAR RNA Binding Ligands.

Angew Chem Int Ed Engl

School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India.

Published: July 2020

The highly conserved HIV-1 transactivation response element (TAR) binds to the trans-activator protein Tat and facilitates viral replication in its latent state. The inhibition of Tat-TAR interactions by selectively targeting TAR RNA has been used as a strategy to develop potent antiviral agents. Therefore, HIV-1 TAR RNA represents a paradigmatic system for therapeutic intervention. Herein, we have employed biotin-tagged TAR RNA to assemble its own ligands from a pool of reactive azide and alkyne building blocks. To identify the binding sites and selectivity of the ligands, the in situ cycloaddition has been further performed using control nucleotide (TAR DNA and TAR RNA without bulge) templates. The hit triazole-linked thiazole peptidomimetic products have been isolated from the biotin-tagged target templates using streptavidin beads. The major triazole lead generated by the TAR RNA presumably binds in the bulge region, shows specificity for TAR RNA over TAR DNA, and inhibits Tat-TAR interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687225PMC
http://dx.doi.org/10.1002/anie.202003461DOI Listing

Publication Analysis

Top Keywords

tar rna
28
tar
10
hiv-1 tar
8
tat-tar interactions
8
tar dna
8
rna
7
target-directed azide-alkyne
4
azide-alkyne cycloaddition
4
cycloaddition assembling
4
assembling hiv-1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!