Background: Conventional type 1 dendritic cells (cDC1s) control anti-viral and anti-tumor immunity by inducing antigen-specific cytotoxic CD8 T-cell responses. Controversy exists whether cDC1s also control CD4 T helper 2 (Th2) cell responses, since suppressive and activating roles have been reported. DC activation status, controlled by the transcription factor NF-κB, might determine the precise outcome of Th-cell differentiation upon encounter with cDC1s. To investigate the role of activated cDC1s in Th2-driven immune responses, pulmonary cDC1s were activated by targeted deletion of A20/Tnfaip3, a negative regulator of NF-κB signaling.

Methods: To target pulmonary cDC1s, Cd207 (Langerin)-mediated excision of A20/Tnfaip3 was used, generating Tnfaip3 xCd207 (Tnfaip3 ) mice. Mice were exposed to house dust mite (HDM) to provoke Th2-mediated immune responses.

Results: Mice harboring Tnfaip3-deficient cDC1s did not develop Th2-driven eosinophilic airway inflammation upon HDM exposure, but rather showed elevated numbers of IFNγ-expressing CD8 T cells. In addition, Tnfaip3 mice harbored increased numbers of IL-12-expressing cDC1s and elevated PD-L1 expression in all pulmonary DC subsets. Blocking either IL-12 or IFNγ in Tnfaip3 mice restored Th2 responses, whereas administration of recombinant IFNγ during HDM sensitization in C57Bl/6 mice blocked Th2 development.

Conclusions: These findings indicate that the activation status of cDC1s, shown by their specific expression of co-inhibitory molecules and cytokines, critically contributes to the development of Th2 cell-mediated disorders, most likely by influencing IFNγ production in CD8 T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687104PMC
http://dx.doi.org/10.1111/all.14334DOI Listing

Publication Analysis

Top Keywords

tnfaip3 mice
12
cdc1s
9
expression pulmonary
8
conventional type
8
dendritic cells
8
airway inflammation
8
cdc1s control
8
activation status
8
pulmonary cdc1s
8
cd8 cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!