Physical and psychological stress exerts a substantial effect on gastrointestinal motility disorders, where trauma enhances symptoms of digestive dysfunction. Interstitial cells of Cajal (ICCs) act as pacemakers for gastrointestinal motility regulation and are likely important in stress-associated gastrointestinal motility disorders. This study explored the mechanisms underlying gallbladder ICCs function under acute stress conditions using a rabbit chest puncture and cholecystectomy model. The stem cell factor (SCF)/c-kit pathway is essential for the development of ICCs, and gene expression was investigated to identify stress-induced transcriptional alterations. Immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end labeling assays were used to determine ICCs apoptosis, whereas western blot analysis and reverse-transcription polymerase chain reaction were used to detect changes in the SCF/c-kit signaling pathway. These methods revealed a reduction in ICCs via apoptosis following stress, and ICCs increased over time after stressor removal. Therefore, this study demonstrates the impact of stress on ICCs development and survival and further confirms the link between stress and gastrointestinal motility.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.29686DOI Listing

Publication Analysis

Top Keywords

gastrointestinal motility
16
acute stress
8
interstitial cells
8
cells cajal
8
motility disorders
8
iccs apoptosis
8
stress iccs
8
iccs
7
stress
6
impact acute
4

Similar Publications

This study aimed to compare the inhibitory effect of flunixin meglumine and meloxicam on the smooth muscles of the gastrointestinal tract in male cattle. Tissue samples, including the abomasum, ileum, proximal loop and centripetal gyri of the ascending colon, were collected from routinely slaughtered male cattle. These samples were sectioned into strips and mounted in an isolated tissue bath system.

View Article and Find Full Text PDF

Cisplatin, a chemotherapeutic drug, is known for causing gastrointestinal disorders and neuropathic pain, but its impact on visceral sensitivity is unclear. Monosodium glutamate (MSG) has been shown to improve gastrointestinal dysmotility and neuropathic pain induced by cisplatin in rats. This study aimed to determine if repeated cisplatin treatment alters visceral sensitivity and whether dietary MSG can prevent these changes.

View Article and Find Full Text PDF

Background: Post-acute coronavirus disease 2019 (COVID-19) syndrome (PACS) is the persistence of sequel of acute SARS-COV-2 infection. Persistent/acquired gastrointestinal symptoms (GI-PACS) include loss of appetite, nausea, weight loss, abdominal pain, heartburn, dysphagia, altered bowel motility, dyspepsia, and irritable bowel syndrome. The study aimed to assess the short- and long-term GI-PACS syndrome on the GSRS scale.

View Article and Find Full Text PDF

Background And Aims: The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients.

View Article and Find Full Text PDF

Background: Postoperative ileus is a surgical complication that affects intestinal motility. There are measures to reduce this problem, but not all have conclusive current evidence.

Objective: To determine which measures such as coffee, chewing gum, electro-acupuncture, Daikenchuto (DKT) and prokinetic agents are most effective in reducing postoperative ileus in patients undergoing gastrointestinal surgeries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!