Electric cell-substrate impedance spectroscopy (ECIS) enables non-invasive and continuous read-out of electrical parameters of living tissue. The aim of the current study was to investigate the performance of interdigitated sensors with 50 μm electrode width and 50 μm inter-electrode distance made of gold, aluminium, and titanium for monitoring the barrier properties of epithelial cells in tissue culture. At first, the measurement performance of the photolithographic fabricated sensors was characterized by defined reference electrolytes. The sensors were used to monitor the electrical properties of two adherent epithelial barrier tissue models: renal proximal tubular LLC-PK1 cells, representing a normal functional transporting epithelium, and human cervical cancer-derived HeLa cells, forming non-transporting cancerous epithelial tissue. Then, the impedance spectra obtained were analysed by numerically fitting the parameters of the two different models to the measured impedance spectrum. Aluminium sensors proved to be as sensitive and consistent in repeated online-recordings for continuous cell growth and differentiation monitoring as sensors made of gold, the standard electrode material. Titanium electrodes exhibited an elevated intrinsic ohmic resistance in comparison to gold reflecting its lower electric conductivity. Analysis of impedance spectra through applying models and numerical data fitting enabled the detailed investigation of the development and properties of a functional transporting epithelial tissue using either gold or aluminium sensors. The result of the data obtained, supports the consideration of aluminium and titanium sensor materials as potential alternatives to gold sensors for advanced application of ECIS spectroscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181462 | PMC |
http://dx.doi.org/10.1007/s10544-020-00486-4 | DOI Listing |
Sci Rep
December 2024
Department of Computer Engineering, Marwadi University, Rajkot, 360003, India.
The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.
View Article and Find Full Text PDFHeliyon
December 2024
University of Münster, Schlossplatz 2, Münster, 48149, Germany.
The introduction of next-generation extremely energetic particle accelerator facilities, such as the High-Luminosity upgrade of the LHC (HL-LHC) or the proposed future circular collider (FCC), will dramatically increase the energy stored in the circulating particle beams. This will critically affect the thermo-physical and mechanical properties of the materials adopted, possibly compromising their reliability during the operating lifetime. In this scenario, it is paramount to assess the dynamic thermo-mechanical response of materials presently used, or being developed for future use, in beam intercepting devices exposed to potentially destructive events caused by the impact of energetic particle beams.
View Article and Find Full Text PDFACS Omega
December 2024
Naval University of Engineering, Wuhan 430033, China.
Multipactor, a vacuum discharge under microwave conditions triggered by secondary electron emission (SEE), plays a critical role in managing the power level of microwave devices. In this study, we developed a fluorocarbon-titanium composite film on aluminum by cosputtering polytetrafluoroethylene (PTFE) and titanium via a controlled temperature and sputtering power ratio (RF power for PTFE to DC power for Ti) to suppress the SEE of Al. The evolution of microtopography and chemical composition of the composite film was evaluated.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
This paper reports the utilization of cost-effective bottom-contact electrodes composed of aluminum (Al) and titanium (Ti) to facilitate efficient electron injection in n-channel organic transistors. The optimized Al/Ti electrode has a low work function of around 4.03 eV, combining the high conductivity of Al with the stable interface of Ti, making it highly suitable for the electrodes of n-channel transistors.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Roll-bonding has rarely been applied to prepare rods for negative thermal expansion metamaterials (NTEMs). Parameters for quantitatively assessing the isotropy and cyclic thermal stability of the thermal expansion coefficient α of NTEMs are lacking. Here, the Ti-to-Al thickness ratio in bimetallic rods for "cross-shaped" node bending-dominated NTEMs was optimized using a general model proposed in the literature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!