The increasing utilization of copper oxide nanoparticles (CuO NPs) and their release into the environment has made it imperative to elucidate their impact on the ecological system including plants. However, their potential toxic impact and mechanisms on plant growth are still unclear. The aim of this study was to investigate the effects of CuO NPs and released Cu ions on seed germination and early seedling growth, as well as physiological and biochemical parameters of Oryza sativa. The results showed that CuO NPs at high concentration significantly inhibited seed germination and early seedling growth. The toxicity of CuO NPs originated from the particulate NPs rather than the released Cu. The phytotoxicity of CuO NPs to rice seed germination and seedling growth probably induced by high Cu accumulation along with the lignification and oxidative damage. The work presented here will increase our knowledge of phytotoxicity of CuO NPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-020-02850-9 | DOI Listing |
Langmuir
January 2025
Perm State University, 15 Bukirev strasse, Perm 614068, Russia.
Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.
View Article and Find Full Text PDFSmall
January 2025
Institute of Process Research & Development, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
An adjustable and scalable method for the continuous flow synthesis of cupric oxide nanoparticles (CuO NPs), targetted the reduction of their activity to synthetic biomembranes to inform the fabrication of nanoparticles (NPs) with reduced toxicity for commercial applications. By manipulating key factors; temperature, residence time, and the ratio of precursor to reductant, precise control over the morphology of CuO NPs is achieved with X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirming the formation of needle-shaped CuO NPs. One-variable-at-a-time studies reveal a relationship between the synthesis conditions and the characteristics of the resultant NPs, with CuO NPs varying controllably between 10-50 nanometres in length and 4-10 nanometres in width.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
CPRAC Research Center, Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, Bou-Ismail CP, Tipaza, 42004, Algeria.
The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr city, Cairo, Egypt.
Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!