The current work provides a comparative study of the thermoelectric properties of the SnGeTe phases doped with Sb and Bi and alloyed with CuTe. The SnGeTe composition was chosen based on the fact that it delivers the highest ZT value within the SnGeTe series (x≤ 0.5). Doping SnGeTe with electron-richer Sb and Bi improves both the charge transport properties and thermal conductivities. Alloying with CuTe optimizes the thermoelectric performance of the samples even further, yielding a ZT value of 0.99 for (SnGe)BiTe(CuTe) at 500 °C. Hall measurements were performed to understand the effects of doping and alloying.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0dt00544d | DOI Listing |
Research (Wash D C)
July 2022
Department of Physics, Xiamen University, Xiamen 361005, China.
How to achieve high thermoelectric figure of merit is still a scientific challenge. By solving the Boltzmann transport equation, thermoelectric properties can be written as integrals of a single function, the transport distribution function (TDF). In this work, the shape effects of transport distribution function in various typical functional forms on thermoelectric properties of materials are systematically investigated.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
While thermoelectric conversion by a thermocapacitive cycle has been considered a promising green technology for low-grade heat recovery, our study finds that its practical feasibility is overestimated. During thermal charging, the coexistence and dynamic competition between thermal-induced voltage rise and self-discharge lead to the limitations of the thermocapacitive cycle. Therefore, the operational conditions in the charge-heat-discharge steps seriously restrict the thermal charging performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India.
In the past decade, significant efforts have been made to develop efficient half-Heusler (HH) based thermoelectric (TE) materials. However, their practical applications remain limited due to various challenges occurring during the fabrication of TE devices, particularly the development of stable contacts with low interfacial resistance. In this study, we have made an effort to explore a stable contact material with low interfacial resistance for an n-type TiCoSb-based TE material, specifically TiNbCoSbBi as a proof of concept, using a straightforward facile synthesis route of spark plasma sintering.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
Te-free thermoelectrics have garnered significant interest due to their immense thermoelectric potential and low cost. However, most Te-free thermoelectrics have relatively low performance because of the strong electrical and thermal transport conflicts and unsatisfactory compatibility of interfaces between device materials. Here, we develop lattice defect engineering through Cu doping to realize a record-high figure of merit of ~1.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Jakkur P.O. 560064, India.
Seeking new and efficient thermoelectric materials requires a detailed comprehension of chemical bonding and structure in solids at microscopic levels, which dictates their intriguing physical and chemical properties. Herein, we investigate the influence of local structural distortion on the thermoelectric properties of TlCuS, a layered metal sulfide featuring edge-shared Cu-S tetrahedra within CuS layers. While powder X-ray diffraction suggests average crystallographic symmetry with no distortion in CuS tetrahedra, the synchrotron X-ray pair distribution function experiment exposes concealed local symmetry breaking, with dynamic off-centering distortions of the CuS tetrahedra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!