Atrial fibrillation (AF) is characterized by electrical and structural remodeling. Irregular and/or fast atrio-ventricular (AV) conduction during AF can result in AV dyssynchrony, tachymyopathy, pressure and volume overload with subsequent dilatation, valve regurgitation, and ventricular dysfunction with progression to heart failure. To gain further insight into the myocardial pathophysiological changes induced by right atrial tachypacing (A-TP) in a large animal model. A total of 28 Landrace pigs were randomized as 14 into AF-induced A-TP group and 14 pigs to control group. AF pigs were tachypaced for 43 ± 4 days until in sustained AF. Functional remodeling was investigated by echocardiography (after cardioversion to sinus rhythm). Structural remodeling was quantified by histological preparations with picrosirius red and immunohistochemical stainings. A-TP resulted in decreased left ventricular ejection fraction (LVEF) accompanied by increased end-diastolic and end-systolic left atrium (LA) volume and area. In addition, A-TP was associated with mitral valve (MV) regurgitation, diastolic dysfunction and increased atrial and ventricular fibrotic extracellular matrix (ECM). A-TP induced AF with concomitant LV systolic and diastolic dysfunction, increased LA volume and area, and atrial and ventricular fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160334PMC
http://dx.doi.org/10.3389/fvets.2020.00179DOI Listing

Publication Analysis

Top Keywords

atrial ventricular
12
structural remodeling
12
atrial fibrillation
8
induced atrial
8
atrial tachypacing
8
valve regurgitation
8
group pigs
8
volume area
8
diastolic dysfunction
8
dysfunction increased
8

Similar Publications

Background: Given the prevalence of cardiovascular disease, encountering difficult airways in this patient population is quite common. The challenge for anesthesiologists lies not only in establishing the airway but also in managing the hemodynamic instability caused by sympathetic activation during intubation. The purpose of this report is to describe the anesthetic experience of this patient with severe mitral and tricuspid regurgitation, atrial fibrillation with rapid ventricular response, and moderate pulmonary hypertension with an anticipated difficult airway.

View Article and Find Full Text PDF

Impact of papillary muscle infarction on atrial and ventricular myocardial deformation in non-anterior STEMI patients.

Int J Cardiovasc Imaging

January 2025

Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato s.s. 554 Monserrato (Cagliari), Monserrato, 09045, Italy.

The purpose of this study was to explore the impact of papillary muscle (PPM) infarction on left atrial and ventricular strain parameters in patients with non-anterior ST-segment elevation myocardial infarction (NA-STEMI) using cardiovascular magnetic resonance (CMR). This retrospective study performed CMR scans on 88 consecutive patients with NA-STEMI (68 males, 65 ± 10.05 years).

View Article and Find Full Text PDF

Objectives: Supra-normal left ventricular ejection fraction (snLVEF) represents a heterogeneous group with distinct prognoses. Left atrial (LA) strain, measured by speckle tracking echocardiography (STE), is a validated prognostic indicator. This study aimed to evaluate LA and left ventricular (LV) mechanical strains in hypertensive patients with snLVEF.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is a prevalent cardiac arrhythmia, with ventricular rate control being a critical therapeutic target. However, the optimal range for ventricular rate control remains unclear. Additionally, the relationship between different levels of ventricular rate control and cardiac remodeling in patients with atrial fibrillation remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!