Establishment of a hTfR mAb-functionalized HPPS theranostic nanoplatform.

Nanotheranostics

Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Published: April 2021

: Many efforts have been made to develop ligand-directed nanotheranostics in cancer management which could afford both therapeutic and diagnostic functions as well as tumor-tailored targeting. Theranostic nanoplatform targeting transferrin receptor (TfR) is an effective system for favorable delivery of diagnostic and therapeutic agents to malignancy site. : To enable amalgamation of therapy and diagnosis to many TfR tumor, hTfR (human TfR) monoclonal antibody (mAb)-functionalized HPPS nanoparticle (HPPS-mAb) was prepared with hTfR mAb on the shell and with fluorophore DiR-BOA in the core. The targeting specificity was investigated by immunostaining and using a double-tumor-engrafted mouse model. HPPS-mAb/siRNA effect on HepG2 cells was determined by RT-PCR and western blot. : HPPS-mAb could specifically target cancer cells through TfR and achieve tumor accumulation at an early valuable time node, thus efficiently delivering therapeutic survivin siRNA into TfR HepG2 cells and mediating cell apoptosis. DiR-BOA can act as an imaging tool to diagnose cancer. : Our studies provide a promising TfR mAb-directed theranostic nanoplatform candidate in tumor molecular imaging and in TfR targeted tumor therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7171386PMC
http://dx.doi.org/10.7150/ntno.41741DOI Listing

Publication Analysis

Top Keywords

theranostic nanoplatform
12
mab-functionalized hpps
8
hepg2 cells
8
tfr
7
establishment htfr
4
htfr mab-functionalized
4
hpps theranostic
4
nanoplatform efforts
4
efforts develop
4
develop ligand-directed
4

Similar Publications

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

One step synthesis of tryptophan-isatin carbon nano dots and bio-applications as multifunctional nanoplatforms.

Colloids Surf B Biointerfaces

January 2025

Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey. Electronic address:

The development of natural molecule-derived carbon nano dots (CNDs) marks a significant advancement in biocompatible and sustainable nanomaterials. Tryptophan, capable of crossing the blood-brain barrier (BBB), serves as a precursor to numerous pharmacologically active compounds, while isatin and its derivatives have demonstrated anti-tumor effects, including against brain cancers. This study aimed to synthesize fluorescent CNDs from tryptophan-isatin hybrid precursor and explore their applications in glioblastoma treatment.

View Article and Find Full Text PDF

Nanosheet-shaped WS/ICG nanocomposite for photodynamic/photothermal synergistic bacterial clearance and cutaneous regeneration on infectious wounds.

Biomater Adv

January 2025

Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China. Electronic address:

Bacterial infections present a significant threat to human health, a challenge that is intensified by the slow pace of novel antibiotic development and the swift emergence of bacterial resistance. The development of novel antibacterial agents is crucial. Indocyanine green (ICG), a widely used imaging dye, efficiently generates reactive oxygen species (ROS) and heat for treating bacterial infections but suffers from aggregation and instability, limiting its efficacy.

View Article and Find Full Text PDF

20% acute pancreatitis (AP) develops into severe AP (SAP), a global health crisis, with an increased mortality rate to 30%-50%. Mitochondrial damage and immune disorders are direct factors, which exacerbate the occurrence and progression of AP. So far, mitochondrial and immunity injury in SAP remains largely elusive, with no established treatment options available.

View Article and Find Full Text PDF

Photodynamic and photothermal bacteria targeting nanosystems for synergistically combating bacteria and biofilms.

J Nanobiotechnology

January 2025

Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.

The escalating hazards posed by bacterial infections underscore the imperative for pioneering advancements in next-generation antibacterial modalities and treatments. Present therapeutic methodologies are frequently impeded by the constraints of insufficient biofilm infiltration and the absence of precision in pathogen-specific targeting. In this current study, we have used chlorin e6 (Ce6), zeolitic imidazolate framework-8 (ZIF-8), polydopamine (PDA), and UBI peptide to formulate an innovative nanosystem meticulously engineered to confront bacterial infections and effectually dismantle biofilm architectures through the concerted mechanism of photodynamic therapy (PDT)/photothermal therapy (PTT) therapies, including in-depth research, especially for oral bacteria and oral biofilm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!