This study aimed to develop a low-calorie apricot nectar by replacing sucrose with different amount of (Rebaudioside A, 98%). Stevia has become very popular as sweetener for the production of low-calorie products but its addition could be a challenge for industry, since it could modify sensory features of the product and consumers' acceptance. To this end, apricot nectars without sugar, with sucrose 10%, and with different amounts of stevia were produced and evaluated for microbiological quality using the pour-plate technique, and physicochemical (pH, TTA, and ) and nutritional (moisture, fat, protein, carbohydrates, and ash) characteristics. Furthermore, a sensory analysis of the samples was performed by a panel of trained judges using quantitative descriptive analysis. The effect of stevia addiction on the consumers' acceptance was investigated by 102 consumers of fruit juices that evaluated the overall acceptability of the samples using a structured 9-point hedonic scale. Levels of microbial groups in nectars were under the detection limit confirming a good hygienic practice within the production. Nectars produced with stevia resulted in significant reduction in caloric value from 86 kcal (nectar with 10% sucrose) to 49 kcal (nectars with stevia), without altering its typicality. Different sensory profiles among samples were pointed out; all the products are liked, but with a different level of pleasantness. The study highlighted that the apricot nectars with 0.07% stevia are characterized for sweet and liquorice aroma notes and received the same level of consumer acceptability of nectars produced with 10% sucrose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174211 | PMC |
http://dx.doi.org/10.1002/fsn3.1464 | DOI Listing |
J Agric Food Chem
January 2025
School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
D-Allose, a rare sugar, has gained significant attention not only as a low-calorie sweetener but also for its anticancer, antitumor, anti-inflammatory, antioxidant, and other pharmaceutical properties. Despite its potential, achieving high-level biosynthesis of D-allose remains challenging due to inefficient biocatalysts, low conversion rates, and the high cost of substrates. Here, we explored the food-grade coexpression of D-allulose 3-epimerase (Bp-DAE) and L-rhamnose isomerase (BsL-RI) within a single cell using WB800N as the host.
View Article and Find Full Text PDFMicroorganisms
December 2024
Biochemical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.
d-Xylitol is a low-calorie and anti-cariogenic sweetener suitable for diabetic patients, making it a valuable ingredient in various health-related applications. In this study, we investigated the production of d-xylitol from l-arabinose derived from sugar beet press pulp (SBPP) hydrolysate using an engineered strain. Initial batch studies applying stirred tank bioreactors demonstrated d-xylitol production of 4.
View Article and Find Full Text PDFFood Sci Biotechnol
January 2025
School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People's Republic of China.
Proteomics
January 2025
Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
Metaproteomics is a valuable approach to characterize the biological functions involved in the gut microbiota (GM) response to dietary interventions. Ketogenic diets (KDs) are very effective in controlling seizure severity and frequency in drug-resistant epilepsy (DRE) and in the weight loss management in obese/overweight individuals. This case study provides proof of concept for the suitability of metaproteomics to monitor changes in taxonomic and functional GM features in an individual on a short-term very low-calorie ketogenic diet (VLCKD, 4 weeks), followed by a low-calorie diet (LCD).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China.
d-Tagatose, a rare sugar endowed with a low-calorie property, superior taste quality, and probiotic functionality, has garnered significant research attention. However, the prevailing biological production methods relying on β-galactosidase and l-arabinose isomerase face challenges including high cost and suboptimal conversion efficiency. Consequently, it is of great research significance to find efficient alternative routes for d-tagatose synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!