Viable pathogenic bacteria are major biohazards that pose a significant threat to food safety. Despite the recent developments in detection platforms, multiplex identification of viable pathogens in food remains a major challenge. A novel strategy is developed through direct metatranscriptome RNA-seq and multiplex RT-PCR amplicon sequencing on Nanopore MinION to achieve real-time multiplex identification of viable pathogens in food. Specifically, this study reports an optimized universal Nanopore sample extraction and library preparation protocol applicable to both Gram-positive and Gram-negative pathogenic bacteria, demonstrated using a cocktail culture of O157:H7, , and , which were selected based on their impact on economic loss or prevalence in recent outbreaks. Further evaluation and validation confirmed the accuracy of direct metatranscriptome RNA-seq and multiplex RT-PCR amplicon sequencing using Sanger sequencing and selective media. The study also included a comparison of different bioinformatic pipelines for metatranscriptomic and amplicon genomic analysis. MEGAN without rRNA mapping showed the highest accuracy of multiplex identification using the metatranscriptomic data. EPI2ME also demonstrated high accuracy using multiplex RT-PCR amplicon sequencing. In addition, a systemic comparison was drawn between Nanopore sequencing of the direct metatranscriptome RNA-seq and RT-PCR amplicons. Both methods are comparable in accuracy and time. Nanopore sequencing of RT-PCR amplicons has higher sensitivity, but Nanopore metatranscriptome sequencing excels in read length and dealing with complex microbiome and non-bacterial transcriptome backgrounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160302 | PMC |
http://dx.doi.org/10.3389/fmicb.2020.00514 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!