It is essential to develop a simple and sensitive method to rapidly detect residual fungicides in agricultural products to protect human health. So far, little studies have been reported on potential application of gold nanospheres (AuNSps) as a surface plasmon resonance based sensor for in-situ detection of residual fungicides. Therefore, in this study, we investigated the potential application of AuNSps as a surface plasmon resonance based sensor for in-situ detection of fungicides. AuNSps were successfully synthesized via a seed-mediated method with some modifications. Firstly, gold nanoseeds were made during the reduction of chloroauric acid by trisodium citrate dihydrate (TSC). Then, AuNSps were grown from the seeds by using HAuCl, TSC and EDTA. AuNSps were subsequently dropped on a glass substrate before covered by thiophanate methyl, a broad-spectrum systemic fungicide. The AuNSps coated glass substrate was subsequently dried in the air for further surface-enhanced Raman spectroscopy (SERS) measurements. Optical properties, shape and size of AuNSps were confirmed by UV-vis spectroscopy, XRD, SEM-EDX and TEM. The results showed that AuNSps were successfully synthesized with the size of 53 nm, and their resonance peak was located at 560 nm. The Raman signal intensity of thiophanate methyl covered on AuNSps is higher than that without AuNSps, indicating SERS effects of AuNSps deposited glass substrate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218903 | PMC |
http://dx.doi.org/10.3390/s20082229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!