The Effect of Environmental Conditions on the Degradation Behavior of Biomass Pellets.

Polymers (Basel)

Section of Transport Engineering and Logistics, Department of Maritime and Transport Technology, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands.

Published: April 2020

Biomass pellets provide a pivotal opportunity in promising energy transition scenarios as a renewable source of energy. A large share of the current utilization of pellets is facilitated by intensive global trade operations. Considering the long distance between the production site and the end-user locations, pellets may face fluctuating storage conditions, resulting in their physical and chemical degradation. We tested the effect of different storage conditions, from freezing temperatures (-19 °C) to high temperature (40 °C) and humidity conditions (85% relative humidity), on the physicochemical properties of untreated and torrefied biomass pellets. Moreover, the effect of sudden changes in the storage conditions on pellet properties was studied by moving the pellets from the freezing to the high temperature and relative humidity conditions and vice versa. The results show that, although storage at one controlled temperature and RH may degrade the pellets, a change in the temperature and relative humidity results in higher degradation in terms of higher moisture uptake and lower mechanical strength.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240501PMC
http://dx.doi.org/10.3390/polym12040970DOI Listing

Publication Analysis

Top Keywords

biomass pellets
12
storage conditions
12
relative humidity
12
high temperature
8
humidity conditions
8
temperature relative
8
pellets
7
conditions
5
environmental conditions
4
conditions degradation
4

Similar Publications

Removal of cyanobacterial harmful algal blooms (HABs) from contaminated local park lake using mycelial pellets.

Heliyon

January 2025

Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.

Eutrophication and hypereutrophication in lakes foster harmful blue-green algal blooms, which pose a significant threat to the ecological health of freshwater reservoirs. This study investigated the effectiveness of the bio-flocculation approach using the fungus strain BGF4A1 to remove these harmful blooms, specifically targeting cyanobacterial species like PCC-7914. Key flocculation parameters, cyanobacterial concentrations, adsorption kinetics, and pellet morphology were explored in this research.

View Article and Find Full Text PDF

Enhancing biofuel pellet quality using torrefaction and co-pelletization of palm kernel shell and empty fruit bunch.

Environ Sci Pollut Res Int

January 2025

Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia.

Palm kernel shell (PKS) and empty fruit bunch (EFB) are potential biomass resources for producing solid biofuel for energy applications. However, raw EFB and PKS are not uniform in size and pose rotting behavior. Torrefaction and co-pelletization are both effective methods to improve their combustion and mechanical characteristics.

View Article and Find Full Text PDF

Efficient continuous SF/N separation using low-cost and robust metal-organic frameworks composites.

Nat Commun

January 2025

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China.

Physisorption presents a promising alternative to cryogenic distillation for capturing the most potent greenhouse gas, SF, but existing adsorbents face challenges in meeting diverse chemical and engineering concerns. Herein, with insights into in-pore chemistry and industrial process design, we report a systematic investigation that constructed two low-cost composites pellets (Al(fum)@2%HPC and Al(fum)@5%Kaolin) coupled with an innovative two-stage Vacuum Temperature Swing Adsorption (VTSA) process for the ultra-efficient recovery of low-concentration SF from N. Record-high selectivities (> 2×10) and SF dynamic capacities (~ 2.

View Article and Find Full Text PDF

The present study aimed to determine the effect of material modification by hot water extraction (HWE) on the compaction efficiency of shredded stalks in the pellet production process. Samples were prepared to differ in the number of HWE cycles: HWE I was subjected to a single cycle, HWE II was subjected to two cycles, and HWE III was subjected to three cycles and unmodified material. An analysis of the compaction process was carried out to evaluate the effect of HWE on density and energy consumption.

View Article and Find Full Text PDF

Densification of biomass through pelletizing offers a promising approach to producing clean biofuels from renewable resources. This study, which investigates the impact of additive blends on wheat straw pellet making and upgrading the physiochemical properties, has revealed exciting possibilities. Five additives, including sawdust (SD), bentonite clay (BC), corn starch (S), crude glycerol (CG), and biochar (BioC), were chosen for this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!