Understanding the coral microbiome is critical for predicting the fidelity of coral symbiosis with growing surface seawater temperature (SST). However, how the coral microbiome will respond to increasing SST is still understudied. Here, we compared the coral microbiome assemblages among 73 samples across six typical South China Sea coral species in two thermal regimes. The results revealed that the composition of microbiome varied across both coral species and thermal regimes, except for The tropical coral microbiome displayed stronger heterogeneity and had a more un-compacted ecological network than subtropical coral microbiome. The coral microbiome was more strongly determined by environmental factors than host specificity. γ- (32%) and α-proteobacteria (19%), Bacteroidetes (14%), Firmicutes (14%), Actinobacteria (6%) and Cyanobacteria (2%) dominated the coral microbiome. Additionally, bacteria inferred to play potential roles in host nutrients metabolism, several keystone bacteria detected in human and plant rhizospheric microbiome were retrieved in explored corals. This study not only disentangles how different host taxa and microbiome interact and how such an interaction is affected by thermal regimes, but also identifies previously unrecognized keystone bacteria in corals, and also infers the community structure of coral microbiome will be changed from a compacted to an un-compacted network under elevated SST.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232356 | PMC |
http://dx.doi.org/10.3390/microorganisms8040604 | DOI Listing |
Anim Microbiome
January 2025
School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA.
Background: Evolutionary tradeoffs between life-history strategies are important in animal evolution. Because microbes can influence multiple aspects of host physiology, including growth rate and susceptibility to disease or stress, changes in animal-microbial symbioses have the potential to mediate life-history tradeoffs. Scleractinian corals provide a biodiverse, data-rich, and ecologically-relevant host system to explore this idea.
View Article and Find Full Text PDFISME Commun
January 2024
Department of Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada.
Knowledge of spatial distribution patterns of biodiversity is key to evaluate and ensure ocean integrity and resilience. Especially for the deep ocean, where in situ monitoring requires sophisticated instruments and considerable financial investments, modeling approaches are crucial to move from scattered data points to predictive continuous maps. Those modeling approaches are commonly run on the macrobial level, but spatio-temporal predictions of host-associated microbiomes are not being targeted.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Biology, University of Miami, Coral Gables, Florida, USA.
Microorganisms underpin numerous ecosystem processes and support biodiversity globally. Yet, we understand surprisingly little about what structures environmental microbiomes, including how to efficiently identify key players. Microbiome network theory predicts that highly connected hubs act as keystones, but this has never been empirically tested in nature.
View Article and Find Full Text PDFMar Environ Res
December 2024
Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, P.B, 11562, Egypt. Electronic address:
Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms.
View Article and Find Full Text PDFMath Biosci
December 2024
Disease Modeling Lab (DiMoLab), Department of Mathematics and Statistics, San Diego State University, San Diego, 92182, CA, USA; Computational Science Research Center, San Diego State University, San Diego, 92182, CA, USA; Viral Information Institute, San Diego State University, San Diego, 92182, CA, USA. Electronic address:
Black band disease (BBD) is one of the most prevalent diseases causing significant destruction of coral reefs. Coral reefs acquire this deadly disease from bacteria in the microbiome community, the composition of which is highly affected by the environmental temperature. While previous studies have provided valuable insights into various aspects of BBD, the temperature-dependent microbiome composition has not been considered in existing BBD models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!