Most G protein-coupled receptors that bind the hydrophobic ligands (lipid receptors and steroid receptors) belong to the most populated class A (rhodopsin-like) of these receptors. Typical examples of lipid receptors are: rhodopsin, cannabinoid (CB), sphingosine-1-phosphate (S1P) and lysophosphatidic (LPA) receptors. The hydrophobic ligands access the receptor binding site from the lipid bilayer not only because of their low solubility in water but also because of a large N-terminal domain plug preventing access to the orthosteric binding site from the extracellular milieu. In order to identify the most probable ligand exit pathway from lipid receptors CB1, S1P1 and LPA1 orthosteric binding sites we performed at least three repeats of steered molecular dynamics simulations in which ligands were pulled in various directions. For specific ligands being agonists, the supervised molecular dynamics approach was used to simulate the ligand entry events to the inactive receptor structures. For all investigated receptors the ligand entry/exit pathway goes through the gate between transmembrane helices TM1 and TM7, however, in some cases it combined with a direction toward water milieu.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221835PMC
http://dx.doi.org/10.3390/molecules25081930DOI Listing

Publication Analysis

Top Keywords

hydrophobic ligands
12
lipid receptors
12
receptors
8
binding site
8
orthosteric binding
8
molecular dynamics
8
ligands entry
4
entry exit
4
exit gpcr
4
binding
4

Similar Publications

Ligand Design with Accelerated Disulfide Formation with Serum Albumin to Extend Blood Retention.

ACS Med Chem Lett

January 2025

Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.

We proposed a novel ligand for the interaction with human serum albumin (HSA) to extend the blood half-life of small molecular weight therapeutics. The ligand features an alkyl chain and an activated disulfide to allow binding to the hydrophobic pockets of HSA and the formation of disulfide to Cys34 of HSA, thereby minimizing the initial renal clearance. The dual nature of the ligand-HSA bonding was expected to give the ligand long blood retention.

View Article and Find Full Text PDF

The idea of coordinating biologically active ligand systems to metal centers to exploit their synergistic effects has gained momentum. Therefore, in this report, three Ru complexes - of morpholine-derived thiosemicarbazone ligands have been prepared and characterized by spectroscopy and HRMS along with the structure of through a single-crystal X-ray diffraction study. The solution stability of - was tested using conventional techniques such as UV-vis and HRMS.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Peptide-Bismuth Tricycles: Maximizing Stability by Constraint.

Chemistry

January 2025

Australian National University, Research School of Chemistry, Sullivans Creek Road, ACT 2601, Canberra, AUSTRALIA.

Constrained peptides possess excellent properties for identifying lead compounds in drug discovery. While it has become increasingly straightforward to discover selective high-affinity peptide ligands, especially through genetically encoded libraries, their stability and bioavailability remain significant challenges. By integrating macrocyclization chemistry with bismuth binding, we generated series of linear, cyclic, bicyclic, and tricyclic peptides with identical sequences.

View Article and Find Full Text PDF

Proteins have proven to be useful agents in a variety of fields, from serving as potent therapeutics to enabling complex catalysis for chemical manufacture. However, they remain difficult to design and are instead typically selected for using extensive screens or directed evolution. Recent developments in protein large language models have enabled fast generation of diverse protein sequences in unexplored regions of protein space predicted to fold into varied structures, bind relevant targets, and catalyze novel reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!