Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Swallowing sounds from cervical auscultation include information related to the swallowing function. Several studies have been conducted on the screening tests of dysphagia. The literature shows a significant difference between the characteristics of swallowing sounds obtained from different subjects (e.g., healthy and dysphagic subjects; young and old adults). These studies demonstrate the usefulness of swallowing sounds during dysphagic screening. However, the degree of classification for dysphagia based on swallowing sounds has not been thoroughly studied. In this study, we investigate the use of machine learning for classifying swallowing sounds into various types, such as normal swallowing or mild, moderate, and severe dysphagia. In particular, swallowing sounds were recorded from patients with dysphagia. Support vector machines (SVMs) were trained using some features extracted from the obtained swallowing sounds. Moreover, the accuracy of the classification of swallowing sounds using the trained SVMs was evaluated via cross-validation techniques. In the two-class scenario, wherein the swallowing sounds were divided into two categories (viz. normal and dysphagic subjects), the maximum F-measure was 78.9%. In the four-class scenario, where the swallowing sounds were divided into four categories (viz. normal subject, and mild, moderate, and severe dysphagic subjects), the F-measure values for the classes were 65.6%, 53.1%, 51.1%, and 37.1%, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349358 | PMC |
http://dx.doi.org/10.3390/healthcare8020103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!