Over the past two decades, the vibrational Stark effect has become an important tool to measure and analyze the in situ electric field strength in various chemical environments with infrared spectroscopy. The underlying assumption of this effect is that the normal stretching mode of a target bond such as CO or CN of a reporter molecule (termed vibrational Stark effect probe) is localized and free from mass-coupling from other internal coordinates, so that its frequency shift directly reflects the influence of the vicinal electric field. However, the validity of this essential assumption has never been assessed. Given the fact that normal modes are generally delocalized because of mass-coupling, this analysis was overdue. Therefore, we carried out a comprehensive evaluation of 68 vibrational Stark effect probes and candidates to quantify the degree to which their target normal vibration of probe bond stretching is decoupled from local vibrations driven by other internal coordinates. The unique tool we used is the local mode analysis originally introduced by Konkoli and Cremer, in particular the decomposition of normal modes into local mode contributions. Based on our results, we recommend 31 polyatomic molecules with localized target bonds as ideal vibrational Stark effect probe candidates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219233PMC
http://dx.doi.org/10.3390/s20082358DOI Listing

Publication Analysis

Top Keywords

vibrational stark
20
evaluation vibrational
8
electric field
8
stark probe
8
internal coordinates
8
normal modes
8
local mode
8
vibrational
6
stark
5
critical evaluation
4

Similar Publications

Hydrogen Bond Blueshifts in Nitrile Vibrational Spectra Are Dictated by Hydrogen Bond Geometry and Dynamics.

JACS Au

December 2024

Freie Universität Berlin, Physics Department, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany.

Vibrational Stark effect (VSE) spectroscopy has become one of the most important experimental approaches to determine the strength of noncovalent, electrostatic interactions in chemistry and biology and to quantify their influence on structure and reactivity. Nitriles (C≡N) have been widely used as VSE probes, but their application has been complicated by an anomalous hydrogen bond (HB) blueshift which is not encompassed within the VSE framework. We present an empirical model describing the anomalous HB blueshift in terms of H-bonding geometry, i.

View Article and Find Full Text PDF

π-Lewis Base Activation of Carbonyls and Hexafluorobenzene.

Angew Chem Int Ed Engl

December 2024

Saarland University, Coordination Chemistry, Campus C 4.1, 66123, Saarbrücken, GERMANY.

We report hitherto elusive side-on η2-bonded palladium(0) carbonyl (anthraquinone, benzaldehyde) and arene (benzene, hexa-fluorobenzene) palladium(0) complexes and present the catalytic hydrodefluorination of hexafluorobenzene by cyclohexene. The comparison with respective cyclohexene, pyridine and tetrahydrofuran complexes reveals that the experimental ligand binding strengths follow the order THF < C6H6 < C6F6 < cyclohexene < pyridine < benzaldehyde < anthraquinone. To understand this surprising order, the complexes' electronic structures were elucidated by nuclear magnetic resonance (NMR), single crystal X-Ray diffraction (sc-XRD), ultraviolet/visible (UV/Vis) electronic absorption, infrared (IR) vibrational, Pd L3-edge X-ray absorption (XAS), and X-ray photoelectron (XP) spectroscopic techniques, complemented by Density Functional Theory (DFT) calculations including energy decomposition (EDA-NOCV) and effective oxidation state (EOS) analyses.

View Article and Find Full Text PDF

Introduction: The aviation occupational environment may expose a developing fetus to intermittent hypoxia, high gravitational force, toxic materials, loud noise, high frequency vibrations, and galactic cosmic radiation. These exposures in animal models are associated with adverse neonatal outcomes. We sought to investigate whether a maternal military aviation career was associated with adverse neonatal health outcomes.

View Article and Find Full Text PDF

Solvation Dynamics and Microheterogeneity in Deep Eutectic Solvents.

J Phys Chem B

December 2024

Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India.

Deep eutectic solvents have attracted considerable attention due to their unique properties and their potential to replace conventional solvents in diverse applications, such as catalysis, energy storage, and green chemistry. However, despite their broad use, the microscopic mechanisms governing solvation dynamics and the role of hydrogen bonding in deep eutectic solvents remain insufficiently understood. In this article, we present our contributions toward unravelling the micro heterogeneity within deep eutectic solvents by combining vibrational Stark spectroscopy and two-dimensional infrared spectroscopy with molecular dynamics simulations.

View Article and Find Full Text PDF

Efficient light generation from triplet states of organic molecules has been a hot yet demanding topic in academia and the display industry. Herein, we propose a strategy for developing triplet emitter by creating heterostructures of organic chromophores and transition metal dichalcogenides (TMDs). These heterostructures emit microsecond phosphorescence at room temperature, while their organic chromophores intrinsically exhibit millisecond phosphorescence under vibration dissipation-free conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!