In this study, an investigation is carried out to evaluate and compare the material and physical properties of Grade 5 Titanium alloy (Ti6Al4V G5) samples of three different impeller manufacturers. The study aims to identify the efficient impeller core material from different Ti6Al4V G5 manufacturers. Ultrasonic fatigue test for Ti6Al4V samples of 100 horsepower (hp) centrifugal compressor impeller parts is performed before and after heat treatment. The effect of microstructure on Very High Cycle Fatigue (VHCF) behavior of Ti6Al4V is also analyzed and discussed in detail. Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) observation are carried out to investigate the microstructure of different Ti6Al4V material samples. The dynamic elastic properties are measured by the Impulse Excitation Technique (IET) at room temperature. The fracture behavior of the tensile specimens is analyzed by SEM. Post-heat-treatment analysis of Ti6Al4V is also carried out and presented which affects the grain size of the material sample and thus considerable effect in the mechanical properties. Chemical composition investigation of Ti6Al4V using SEM and Energy Dispersive X-ray Spectroscopy (EDS) also included in this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215716 | PMC |
http://dx.doi.org/10.3390/ma13081948 | DOI Listing |
Theor Appl Genet
January 2025
Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France.
Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.
NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China.
Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO and forms Cu-CeO heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S/S intermediates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China.
Clay minerals show significant potential as fillers in polymer composite solid electrolytes (CSEs), whereas the influence of their microstructures on lithium-ion (Li) transport properties remains insufficiently understood. Herein, we design advanced poly(ethylene oxide) (PEO)-based CSEs incorporating clay minerals with diverse microstructures including 1D halloysite nanotubes, 2D Laponite (Lap) nanosheets, and 3D porous diatomite. These minerals form distinct Li transport pathways at the clay-PEO interfaces due to their varied structural configurations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!