Creep compliance (D(t)) is a very important input for the thermal cracking resistance in the Mechanistic-Empirical Pavement Design Guide (MEPDG). The aim of the work presented here is to predict the results of creep compliance D(t) from the result of complex modulus E*(ω). The work plan is divided in two main parts: an experimental part consisting of creep tests, and a modeling part. Three configurations were compared together, namely direct tensile, direct compression and indirect tensile tests. The modelling part consists of using a 2S2P1D model coupled to Kopelman approximation to switch from the frequency domain to the time domain. Additionally, 2S2P1D was used to calibrate the generalized Kelvin-Voigt model and get the creep compliance directly from E* results. The experimental results show that D(t) from direct tensile and direct compression are the same in the viscoelastic domain and are greater than D(t) from the indirect tensile test. The indirect tensile test (IDT) seems to be very difficult to achieve compared to the other two variants. The converted results using the 2S2P1D model coupled to Kopelman approximation and the results from the GKV model describe the experimental points very well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215418 | PMC |
http://dx.doi.org/10.3390/ma13081945 | DOI Listing |
Eur Phys J E Soft Matter
January 2025
Soft Matter Science and Engineering (SIMM), ESPCI Paris, PSL University, Sorbonne Université, CNRS, Rue Vauquelin, 75005, Paris, France.
The creep behavior of an amorphous poly(etherimide) polymer is investigated in the vicinity of its glass transition in a weakly non linear regime where the acceleration of the creep response is driven by local configurational rearrangements. From the time shifts of the creep compliance curves under stresses from 1 to 15 MPa and in the temperature range between and , where is the glass transition temperature, we determine a macroscopic acceleration factor. The macroscopic acceleration is shown to vary as temperature with , where is the macroscopic stress and Y is a decreasing function of compliance.
View Article and Find Full Text PDFSci Rep
December 2024
China Construction Eighth Engineering Division Rail Transit Construction Co., Ltd, Nanjing, 210018, Jiangsu, China.
The existing calculation method for the surrounding rock pressure of shallow buried bias tunnel fails to account for the impact of the progressive failure characteristics of the surrounding rock and slope creep, thereby neglecting the additional pressure arising from slope creep. Therefore, the progressive instability failure mode of the surrounding rock of shallow buried bias tunnel was obtained by numerical simulation. Based on this, the theoretical analysis model of the additional pressure of shallow buried bias tunnel was established, and the calculation formula of the additional pressure was derived.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Material Technology Innsbruck, Institute of Construction and Material Science, University of Innsbruck, Technikerstraße 13, A-6020 Innsbruck, Austria.
In this paper, we investigate the influence of intrinsic compositional parameters on the viscoelastic compliance by employing three-point bending creep tests on clear, i.e., defect-free, spruce samples with a dimension of 15 × 15 × 280 mm.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China. Electronic address:
To elucidate the mechanisms underlying the changes in the rheological properties of dough made from wheat flour during maturation, the molecular structure of gluten before and after maturation was characterized. Wheat flour was matured under three distinct conditions for predetermined durations. The development time, stability, and maximum force of dough peaked at 7.
View Article and Find Full Text PDFPolymers (Basel)
September 2024
Key Laboratory of Green Building and Intelligent Construction in Higher Educational Institutions of Hunan Province, Hunan City University, Yiyang 413000, China.
Fractional differential viscoelastic models can describe complex material behaviours and fit experimental data well; however, the physical significance of model parameters is difficult to express. In this study, the fractional differential Maxwell, Kelvin, and Zener models were used to fit the short-term creep compliance curves of polymethyl methacrylate at different ageing times. The model fits were in good agreement with the experimental data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!