In eukaryotes, autophagy, a catabolic mechanism for macromolecule and protein recycling, allows the maintenance of amino acid pools and nutrient remobilization. For a better understanding of the relationship between autophagy and nitrogen metabolism, we studied the transcriptional plasticity of autophagy genes () in nine Arabidopsis accessions grown under normal and nitrate starvation conditions. The status of the N metabolism in accessions was monitored by measuring the relative expression of 11 genes related to N metabolism in rosette leaves. The transcriptional variation of the genes coding for enzymes involved in ammonium assimilation characterize the genetic diversity of the response to nitrate starvation. Starvation enhanced the expression of most of the autophagy genes tested, suggesting a control of autophagy at transcriptomic level by nitrogen. The diversity of the gene responses among natural accessions revealed the genetic variation existing for autophagy independently of the nutritive condition, and the degree of response to nitrate starvation. We showed here that the genetic diversity of the expression of N metabolism genes correlates with that of the genes in the two nutritive conditions, suggesting that the basal autophagy activity is part of the integral response of the N metabolism to nitrate availability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226452 | PMC |
http://dx.doi.org/10.3390/cells9041021 | DOI Listing |
Plant Sci
December 2024
Instituto de Fisiología Vegetal (INFIVE CCT CONICET La Plata), Universidad Nacional de La Plata (UNLP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Diagonal 113 Nº 495, La Plata 1900, Argentina. Electronic address:
Nitrate reductase (NR) is an essential enzyme because of its role in nitrogen metabolism and in key signaling events through the generation of the reactive nitrogen species, nitric oxide (NO). In this work, we evaluated changes in endogenous NO levels during the onset of P-restriction in soybean plants (Glycine max), focusing on the possible pathways involved in its generation, namely NR and NO synthase like activity, NOS, and the subsequent role of NR during low P-acclimation. During the first 96 h of P-starvation NO levels increased in the leaves.
View Article and Find Full Text PDFJ Plant Physiol
December 2024
Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province Universities, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. Electronic address:
Nitrogen (N) and phosphorus (P), as indispensable mineral elements, both play pivotal roles in plant growth and development. Despite the intimate association between nitrate signaling and inorganic phosphate (Pi) signaling, the regulatory function of Pi in N metabolism remains poorly understood. In this study, we observed that Pi deficiency leads to a reduction in the activity of nitrate reductase (NR), an essential enzyme involved in N metabolism.
View Article and Find Full Text PDFWater Res
January 2025
School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:
Partial denitrification (PD) can supply essential nitrite (NO) and is supposed to promote the application of Anammox. However, PD-related research mainly involves sequencing batch reactors and activated sludge. Here, we proposed establishing PD in a continuous-flow submerged biofilm module (PD-BfM).
View Article and Find Full Text PDFBurley tobacco, a chlorophyll-deficient mutant with impaired nitrogen use efficiency (NUE), generally requires three to five times more nitrogen fertilization than flue-cured tobacco to achieve a comparable yield, which generates serious environmental pollution and negatively affects human health. Therefore, exploring the mechanisms underlying NUE is an effective measure to reduce environmental pollution and an essential direction for burley tobacco plant improvement. Physiological and genetic factors affecting tobacco NUE were identified using two tobacco genotypes with contrasting NUE in hydroponic experiments.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2024
Department of Chemical Engineering, St. Josesph College of Engineering, Chennai, Tamil Nadu, 600119, India.
This study evaluated the biofuel production potential of two algal species, Chlorella pyrenoidosa and Scenedesmus abundans, under stress conditions induced by nutrient supplementation or starvation at varying light intensities. Central composite face-centered design response surface methodology (CCFD-RSM) was employed to optimize stress conditions by varying the sodium nitrate (NaNO), potassium dihydrogen phosphate (KHPO), dipotassium hydrogen phosphate (KHPO), cultivation time, and light intensity. The study included both C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!