Surface functionalization of plastic parts has been studied and developed for several applications. However, demand for the development of reliable and profitable manufacturing strategies is still high. Here we develop and characterize a new process chain for the versatile and cost-effective production of sub-micron textured plastic parts using laser ablation. The study includes the generation of different sub-micron structures on the surface of a mold using femtosecond laser ablation and vario-thermal micro-injection molding. The manufactured parts and their surfaces are characterized in consideration of polymer replication and wetting behavior. The results of the static contact angle measurements show that replicated Laser-Induced Periodic Surface Structures (LIPSSs) always increase the hydrophobicity of plastic parts. A maximum contact angle increase of 20% was found by optimizing the manufacturing thermal boundary conditions. The wetting behavior is linked to the transition from a Wenzel to Cassie-Baxter state, and is crucial in optimizing the injection molding cycle time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231353PMC
http://dx.doi.org/10.3390/mi11040429DOI Listing

Publication Analysis

Top Keywords

plastic parts
16
functionalization plastic
8
laser-induced periodic
8
periodic surface
8
surface structures
8
structures surface
8
laser ablation
8
wetting behavior
8
contact angle
8
parts
5

Similar Publications

The Body of Chagas Disease Vectors.

Pathogens

January 2025

UMR INTERTRYP University Montpellier, IRD, CIRAD, F-34398 Montpellier, France.

Morphometry is an effort to describe or measure the morphology of the body, or parts of it. It also provides quantitative data on the interactions of living organisms with their environment, external or internal. As a discipline, morphometrics has undergone significant developments in the last decade, making its implementation more visual and less laborious.

View Article and Find Full Text PDF

This manuscript highlights the behavior of biodegradable polymers (PLA and HD PLA Green) coated with two distinct bronze alloy powders, Metco 51F-NS (Cu 9.5Al 1.2Fe) and Metco 445 (Cu 9.

View Article and Find Full Text PDF

Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants.

Phytother Res

January 2025

Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei.

The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately.

View Article and Find Full Text PDF

The primary weight-bearing structure of the proximal femur, trabecular bone, has a complex three-dimensional architecture that was previously difficult to comprehensively display. This study examined the spatial architecture of trabecular struts in the coronal, sagittal, and horizontal sections of the proximal femur using 21 cases prepared with P45 sectional plasticization. The primary compressive strut (PCS) exhibited a "mushroom-like" shape with upper and lower parts.

View Article and Find Full Text PDF

Background: There are several articles discussing the use of a hemostatic net to close dead spaces, but no in-vivo experimental studies have simultaneously examined the histology and tissue perfusion of these techniques.

Objectives: Our aim is to compare variations of the hemostatic net technique commonly used in current practice.

Methods: Two different hemostatic net suturing techniques and two times of suture removal were tested, with a control group for comparison.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!