(PPRV) is known to replicate in a wide variety of ruminants causing very species-specific clinical symptoms. Small ruminants (goats and sheep) are susceptible to disease while domesticated cattle and buffalo are dead-end hosts and do not display clinical symptoms. Understanding the host factors that influence differential pathogenesis and disease susceptibility could help the development of better diagnostics and control measures. To study this, we generated transcriptome data from goat and cattle peripheral blood mononuclear cells (PBMC) experimentally infected with PPRV in-vitro. After identifying differentially expressed genes, we further analyzed these immune related pathway genes using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and selected candidate genes were validated using in-vitro experiments. Upon PPRV infection, we identified 12 and 22 immune related genes that were differentially expressed in goat and cattle respectively. In both species, this included the interferon stimulated genes (ISGs) IFI44, IFI6, IFIT1, IFIT2, IFIT3, ISG15, Mx1, Mx2, OAS1X, RSAD2, IRF7, DDX58 and DHX58 that were transcribed significantly higher in cattle. PPRV replication in goat PBMCs significantly increased the expression of phosphodiesterase 12 (PDE12), a 2',5'-oligoadenylate degrading enzyme that contributes to the reduced modulation of interferon-regulated gene targets. Finally, a model is proposed for the differential susceptibility between large and small ruminants based on the expression levels of type-I interferons, ISGs and effector molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232496 | PMC |
http://dx.doi.org/10.3390/v12040463 | DOI Listing |
G-quadruplexes (G4s) are four-stranded alternative secondary structures formed by guanine-rich nucleic acids and are prevalent across the human genome. G4s are enzymatically resolved using specialized helicases. Previous studies showed that DEAH-box Helicase 36 (DHX36/G4R1/RHAU), has the highest specificity and affinity for G4 structures.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.
The microenvironment tends to be immunosuppressive during tumor growth and proliferation. Immunotherapy has attracted much attention because of its ability to activate tumor-specific immune responses for tumor killing. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an innate immune pathway that activates antitumor immunity by producing type I interferons.
View Article and Find Full Text PDFArthritis Rheumatol
January 2025
Division of Rheumatology, Department of Medicine.
Objective: Photosensitivity occurs in ~75% of lupus patients. Although ultraviolet light radiation (UVR) stimulates Type I interferon (IFN-I) in the skin, how UVR induced skin inflammation leads to downstream effects is poorly understood. Tissue inflammation causes DC to migrate from organs to draining lymph nodes (dLN) including a recently identified inflammatory DC subset (inf cDC2) that are potent antigen presenting cells.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
Background: B-Raf proto-oncogene, serine/threonine kinase (BRAF)-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, PR China. Electronic address:
DHAV-3 is one of the main causative agents of duck viral hepatitis (DVH), an acute and highly lethal infectious disease in duck industry. However, the understanding of the pathogenesis of this virus in ducklings is limited. To dissect the molecular characteristics associated with pathobiology of ducklings to DHAV-3, we applied single-cell RNA-sequencing approach to profile the transcriptome of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!