This study demonstrated the potential effects of the rumen microbiota on the deposition of intramuscular fat, known as marbling. Previous studies on fatty acid metabolism in beef cattle have mostly focused on biohydrogenating rumen bacteria, whereas those on the overall rumen microbiota-to understand their roles in marbling-have not been systematically performed. The rumen microbiota of 14 Korean beef cattle (Hanwoo), which showed similar carcass characteristics and blood metabolites but different marbling scores, were analyzed by 16S rRNA gene sequencing. The rumen samples were grouped into two extreme marbling score groups of host animals as follows: LMS, marbling score≤ 4 or HMS, marbling score ≥7. Species richness tended to be higher in the HMS group, whereas the overall microbiota differed between LMS and HMS groups. RFP12, Verrucomicrobia, , Porphyromonadaceae, and were differentially abundant in the HMS group, whereas was abundant in the LMS group. Some marbling-associated bacterial taxa also contributed to the enrichment of two lipid metabolic pathways including "alpha-linolenic acid metabolism" and "fatty acid biosynthesis" in the HMS microbiome. Taxonomic drivers of fatty acid biosynthesis, particularly in the rumen microbiome of high-marbled meat, could thus be further studied to increase the intramuscular fat content.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222830PMC
http://dx.doi.org/10.3390/ani10040712DOI Listing

Publication Analysis

Top Keywords

rumen microbiota
12
marbling score
12
beef cattle
12
intramuscular fat
8
fatty acid
8
hms group
8
marbling
6
rumen
6
hms
5
association rumen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!