A combination of three-dimensional (3D) cell culturing and non-viral gene transfection is promising in improving outcomes of cell transplantation therapy. Herein, gene transfection profiles in 3D cell culture were compared between plasmid DNA (pDNA) and messenger RNA (mRNA) introduction, using mesenchymal stem cell (MSC) 3D spheroids. Green fluorescence protein (GFP) mRNA induced GFP protein expression in 77% of the cells in the spheroids, whereas only 34% of the cells became GFP positive following pDNA introduction. In mechanistic analyses, most of the cells in MSC spheroids were non-dividing, and pDNA failed to induce GFP expression in most of the non-dividing cells. In contrast, both dividing and non-dividing cells became GFP-positive after mRNA introduction, which led to a high overall percentage of GFP-positive cells in the spheroids. Consequently, mRNA encoding an osteogenic factor, runt-related transcription factor 2 (Runx2), allowed in vitro osteogenic differentiation of MSCs in spheroids more efficiently compared to Runx2 pDNA. Conclusively, mRNA exhibits high potential in gene transfection in 3D cell culture, in which the cell division rate is lower than that in monolayer culture, and the combination of mRNA introduction and 3D cell culture is a promising approach to improve outcomes of cell transplantation in future regenerative therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231348PMC
http://dx.doi.org/10.3390/mi11040426DOI Listing

Publication Analysis

Top Keywords

gene transfection
16
cell culture
16
mrna introduction
12
cell
9
transfection cell
8
future regenerative
8
regenerative therapy
8
outcomes cell
8
cell transplantation
8
msc spheroids
8

Similar Publications

The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis.

View Article and Find Full Text PDF

CPSF4-mediated regulation of alternative splicing of HMG20B facilitates the progression of triple-negative breast cancer.

J Transl Med

December 2024

Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.

Background: Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation.

View Article and Find Full Text PDF

The CEL-HYB1 hybrid allele of the carboxyl ester lipase (CEL) gene and its pseudogene (CELP) has been associated with chronic pancreatitis (CP). Recent work indicated that amino acid positions 488 and 548 in CEL-HYB1 determined pathogenicity. Haplotype Thr488-Ile548 was associated with CP while haplotypes Thr488-Thr548 and Ile488-Thr548 were benign.

View Article and Find Full Text PDF

RFC3 Knockdown Decreases Cervical Cancer Cell Proliferation, Migration and Invasion.

Cancer Genomics Proteomics

December 2024

Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea

Background/aim: Replication factor C subunit 3 (RFC3) is a critical component of the replication factor C complex, which is essential for DNA replication and repair. Recent studies have highlighted the RFC3's significance in various cancer types. Herein, we aimed to elucidate its biological role in cervical cancer.

View Article and Find Full Text PDF

Silencing miR-126-5p protects trabecular meshwork cells against chronic oxidative injury by upregulating HSPB8 to activate PI3K/AKT pathway.

J Mol Histol

December 2024

Department of Ophthalmology, First Affilliated Hospital, Heilongjiang University of Chinese Medicine, No.26 Heping Road, Xiangfang District, Harbin, 150000, China.

Chronic oxidative stress (COS) is related to the pathophysiology of the trabecular meshwork (TM) in glaucoma. MicroRNAs (miRNAs) have a key role in the oxidative stress-mediated glaucoma. This work investigated the function of miR-126-5p in human trabecular meshwork cells (TMCs) under chronic oxidative stress (COS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!