Periphyton has the potential to increase phosphorus use efficiency in paddy fields.

Sci Total Environ

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China.

Published: June 2020

The phosphorus (P) supply is mismatched with rice demand in the early and late stages of rice growth, which primarily results in low P use efficiency and high environmental risk. In recent years, the use of the natural periphyton in nutrient regulation in paddy fields has attracted much research interest. However, a mechanistic understanding of the action of periphyton on P biogeochemical cycling during the pivotal stages of rice growth has received little attention. In this study, the influence of periphyton proliferation on the soil surface and its consequential decomposition on P migration and bioavailability were investigated in two paddy soils using two microcosm experiments. The results showed that periphyton rapidly accumulated fertilizer P when it proliferated on the soil surface under favorable light condition, which led to more fertilizer P being stored on the soil surface and less P being fixed by soil particles or transported via runoff into the water bodies. The decomposition of periphyton under unfavorable light condition not only increased soil soluble reactive P, but also increased the amount of easily available P species, such as labile P, AlP, FeP, and mobilized OP. Thus, periphyton colonizing the soil surface in the early stage of rice growth could act as a P sink and decrease the P environmental risk, and its decomposition in the late stage of rice growth could act as a P source and activator. Phosphorus bioavailability regulated by periphyton could be synchronous with rice needs. Thus, periphyton has the potential to increase P use efficiency in paddy fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137711DOI Listing

Publication Analysis

Top Keywords

rice growth
16
soil surface
16
paddy fields
12
periphyton
9
periphyton potential
8
potential increase
8
efficiency paddy
8
stages rice
8
environmental risk
8
light condition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!